
Fifth Workshop on Computer Architecture Evaluation
using Commercial Workloads

Cambridge, Massachusetts

February 2, 2002

Immediately precedes the

Eighth International Symposium on High Performance
Computer Architecture

Sponsored by the IEEE Computer Society

Organized by:

Russell Clapp, IBM

rclapp@us.ibm.com

Kimberly Keeton, Hewlett-Packard Laboratories

kkeeton@hpl.hp.com

Ashwini Nanda, IBM TJ Watson Research Center

ashwini@watson.ibm.com

Final Program
8:00 am - 8:15 am

Registration

8:20 am - 8:30 am

Introductory Comments

8:30 am – 10:00 am

Session 1: Invited Talks and Benchmarking

Evaluation of Shared Cache Architectures for TPC-H
Michel Dubois, Jaeheon Jeong, Shahin Razeghia, Mahsa Rouhaniz and Ashwini Nanda

University of Southern California and IBM
Precise and Accurate Processor Simulation

Harold W. Cain, Kevin M. Lepak, Brandon A. Schwartz and Mikko H. Lipasti
University of Wisconsin - Madison

New Challenges in Benchmarking Future Processors
Shubhendu S. Mukherjee

Intel Corporation
10:00 am - 10:30 am

Coffee Break

10:30 am – 12:00 pm

Session 2: Methodologies

Evaluating Non-deterministic Multi-threaded Commercial Workloads
Alaa R. Alameldeen, Pacia J. Harper, Milo M. K. Martin, Carl J. Mauer, Daniel J. Sorin,

Min Xu, Mark D. Hill and David A. Wood
University of Wisconsin - Madison

How Input Data Sets Change Program Behaviour
Lieven Eeckhout, Hans Vandierendonck, Koen De Bosschere
Department of Electronics and Information Systems (ELIS)

Ghent University – Belgium
Benchmarking Web Server Architectures: A Simulation Study on Micro Performance

Haiyong Xie, Laxmi Bhuyan and Yeim-Kuan Chang
Department of Computer Science & Engineering

University of California - Riverside

12:00 am - 1:30 pm

Lunch

1:30 pm – 3:00 pm

Session 3: Architecture Evaluation and Modeling

Compressibility Characteristics of Address/Data Transfers in Commercial Workloads
Krishna Kant and Ravi Iyer

Enterprise Architecture Laboratory
Intel Corporation

Performance Workloads in a Hardware Multi Threading Environment
Bret Olszewski and Octavian F. Herescu

IBM
A Processor Queuing Simulation Model for Multiprocessor System Performance

Analysis
Thin-Fong Tsuei and Wayne Yamamoto

Sun Microsystems
3:00 pm - 3:30 pm

Coffee Break

3:30 pm - 5:00 pm

Session 4: Workload Characterization

Performance Analysis of Speech Recognition Software
Chunrong Lai, Shih-Lien Lu and Qingwei Zhao

Intel Corporation
Comparison of Memory System Behavior in Java and Non-Java Commercial

Workloads
Morris Marden, Shih-Lien Lu, Konrad Lai Mikko Lipasti
University of Wisconsin – Madison and Intel Corporation

Characterizing TPC-H on a Clustered Database Engine from the OS Perspective
Yanyong Zhang, Jianyong Zhang, Anand Sivasubramaniam, Chun Liu and Hubertus

Franke
The Pennsylvania State University and IBM T.J. Watson Research Center

5:00 pm

Participant Feedback

Closing Remarks

Session 1

Invited Talks and Benchmarking

Evaluation of Shared Cache Architectures for TPC-H

Michel Dubois, Jaeheon Jeong, Shahin Razeghia,
Mahsa Rouhaniz and Ashwini Nanda

University of Southern California and IBM

Precise and Accurate Processor Simulation

Harold W. Cain, Kevin M. Lepak, Brandon A. Schwartz
and Mikko H. Lipasti

University of Wisconsin – Madison

New Challenges in Benchmarking Future Processors

Shubhendu S. Mukherjee
Intel Corporation

1. Introduction

The design of large-scale servers must be opti-
mized for commercial workloads and web-based
applications. These servers are high-end, shared-mem-
ory multiprocessor systems with large memory hierar-
chies, whose performance is very workload dependent.
Realistic commercial workloads are hard to model
because of their complexity and their size.

Trace-driven simulation is a common approach to
evaluate memory systems. Unfortunately, storing and
uploading full traces for full-size commercial work-
loads is practically impossible because of the sheer
size of the trace. To address this problem, several tech-
niques for sampling traces and for utilizing trace sam-
ples have been proposed [2][4][5][7][9].

For this study, we have collected time samples
obtained from an actual multiprocessor machine run-
ning TPC-H [8] using the MemorIES board developed
by IBM [6]. MemorIES was originally designed to
emulate memory hierarchies in real-time and is
plugged into the system bus of an IBM RS/6000 S7A
SMP system running DB2 under AIX. This system can
run database workloads with up to 1TB of database
data.

The target system that we evaluate with the TPC-H
samples is shown in Figure 1. It is an 8-processor bus
based machine. Each processor has 8MB of second
level cache (4-way, 128 byte blocks). Cache coherence
is maintained by snooping on a high-speed bus. The
24GByte main memory is fronted by a shared cache
[11], whose goal is to cut down on the effective
latency of the large and slow DRAM memory. One
advantage of a shared cache is that it does not require
cache coherence. The disadvantages are that L2-miss
penalties are only partially reduced and the shared
cache does not bring any relieve to bus traffic.

We look at the effects of cache block size and
cache organization. We observe that IO has a large

impact on the cache behavior, especially for very large
shared caches (e.g., 1 GBytes) and therefore we evalu-
ate various strategies for handling IO bus request in
the shared cache --invalidate, update and allocate.

The rest of this paper is organized as follows. In
Section 2, we present the tracing tool obtained by con-
figuring MemorIES, the trace sampling scheme, and
the characteristics of the trace samples. In Section 3,
we describe the target shared-cache architectures. In
Section 4, 5 and 6, we show the impact of the cold-
start effect and classify miss rates into sure maximum
and unknown miss rates. Based on that classification,
we are able to draw some conclusions on the effective-
ness of the shared cache for TPC-H. Finally we con-
clude this abstract in Section 7.

2. TPC-H Traces

Much of this section is reproduced from [6] and [3]
and is included here for completeness.

2.1. Tracing Environment

The IBM Memory Instrumentation and Emulation
System (MemorIES) was designed to evaluate trade-

P 1

L 2

S y stem M em ory

..........

2 4G B y tes o f D R A M

S h ared C ach e
64M B -1G B

IO
8 M B

P 2

L 2
8 M B

P 8

L 2
8 M B

Figure 1. Target Multiprocessor System with Shared Cache

Evaluation of Shared Cache Architectures for TPC-H

Michel Dubois, Jaeheon Jeong**, Shahin Jarhomi, Mahsa Rouhanizadeh and Ashwini Nanda*

Department of Electrical Engineering - Systems
University of Southern California

Los Angeles, CA90089-2562
dubois@paris.usc.edu

*IBM T.J. Watson Research Center
Yorktown Heights, NY

**IBM
Beaverton, OR97006

offs for future memory system designs in multiproces-
sor servers. The MemorIES board sits on the bus of a
conventional SMP and passively monitors all the bus
transactions, as shown in Figure 2. The host machine
is an IBM RS/6000 S7A SMP server, a bus-based
shared-memory multiprocessor. The server configura-
tion consists of eight Northstar processors running at
262MHz and a number of IO processors connected to
the 6xx bus operating at 88 MHz. Each processor has a
private 8 MB 4-way associative L2 cache. The cache
block size is 128 bytes. Currently the size of main
memory is 24 Gbytes.

A finely tuned 100Gbyte TPC-H benchmark [8]
runs on top of DB2 under AIX. Its execution takes
three days on the server.

Although it has been conceived for online cache
emulation, MemorIES can be configured as a tracing
tool. In this mode, it captures bus transactions in real
time and stores them into its on-board memory. Later
on, as the on-board memory fills up, the trace is
uploaded to a disk. Currently, with its 1GB of
SDRAM, MemorIES can collect up to 128M bus
transaction records without any interruption, since
each record occupies 8 bytes.

2.2. Trace Samples

Although MemorIES can store up to 128M refer-
ences per sample, the size of each sample collected for
this study is 64M references. Currently, it takes about
one hour to dump to disk a sample of 64M references
or 512Mbytes. Our trace consists of 12 samples with
roughly one hour between samples and its overall size
is 6 Gbytes. The trace samples were taken during the
first day of a three-day execution of a 100GB TPC-H.
Each sample records about a few minutes of execu-

tion.
Table 1 shows the reference counts of every pro-

cessor and for every transaction type in the first trace
sample. It shows that the variance of the reference
count among processors (excluding IO processors) is
very small. The references by IO processors are domi-
nated by write/flush. We found similar distributions in
the rest of the samples.

Table 2 shows the reference counts of eight trans-
action types in each of the 12 trace samples. We focus
on the following classes of bus transactions: reads,
writes (read-excl, write/inv), upgrades, and write/
flushes (essentially due to IO write). In the 12 samples,
processor reads and writes (including upgrades) con-
tribute to around 44% and 21% of all bus transactions,
respectively. 35% of all bus transactions are due to IO-
writes. IO-writes are caused by input to memory. On
each IO-Write, the data block is transmitted on the bus
and the processor write-back caches are invalidated to
maintain coherence with IO.

We also found some noticeable variations in some
reference counts across trace samples. For instance,
notice the wide variation in the number of upgrades
among samples.

3. Target Shared Cache Architectures

We focus on the evaluation of L3 cache architec-
tures shared by an 8-processor SMP. The shared cache
size varies from 64MB to 1GB. Throughout this paper,
LRU replacement policy is used in the shared cache.
We evaluate Direct mapped and 4-way cache organi-
zations. We also look at two block sizes, 128 Bytes
and 1 Kbytes.

The idea of a shared cache is not new as it was pro-
posed and evaluated in [11], in a different environment
and using analytical models. The goal of a shared
cache as shown in Figure 1 is to cut down on the
latency of DRAM accesses to main memory. On every
bus cycle, the shared cache is looked up and the
DRAM memory is accessed in parallel. If the shared
cache hits, then the memory access is aborted. Other-
wise, the memory is accessed and the shared cache is
updated. Let H be the cache hit rate and let Lcache and
LDRAM be the latency of a shared cache hit and of a
DRAM access. Then the apparent latency of the large
DRAM memory is: (1- H) x LDRAM + H x Lcache.

The shared cache can have a high hit ratio even if
its size is less than the aggregate L2 cache size in the

P 1

L 2

P 2

L 2

P 3

L 2

P 8

S ystem M em o ry

6x x B u s

..........

C on so le A M C C C a rd

M em orIE S

H O S T

M ach in e
P a ra lle l
C on so le P ort

P C I

M A C H IN E

Figure 2. Operating environment of MemorIES

L 2

multiprocessor, because the shared cache does not
maintain inclusion and also because of sharing.

If the main (DRAM) memory is banked and inter-
leaved then a separate shared cache can be used in
conjunction with each memory bank. This partitioning
of the shared cache may result in lower hit rates than
the ones reported here. We assume throughout that the
shared cache can buffer any main memory block.

IO transactions can have a huge impact on shared
cache performance. The standard way to deal with IO
transactions is to simply invalidate the cache on each
IO transaction detected on the bus. However, other
policies are possible, since, on input the transaction
carries the data with it. The first policy is IO-update,
whereby if the shared cache hits, then the block is
updated instead of invalidated. The second policy is
IO-allocate, whereby misses due to IO cache accesses
allocate a block in the cache. Because allocating
means taking a miss in the shared cache, the control

for the cache may be more complex, especially when
the bus transaction does not carry the values for the
entire block. These two strategies may pay off if the
shared cache is big enough to retain database record
between the time it is inputted and the time it is
accessed.

In the shared cache we simulate, we consider each
bus transaction as follows:

Processor requests:
Read: In case of a hit in the shared cache, we update
the LRU statistics for the block. On a miss the data is
loaded in cache from memory.
Read-excl: same as read.
Clean,I-kill: Invalidate the block in the shared
cache.
W-Clean: same as read.
W-kill,Dclaim: These are upgrade request.
Treated as reads in the shared cache.

PID read read-excl clean ikill write/inv write/clean upgrade write/flush

0 3944601 221999 0 192 295218 5677 1629223 67102

1 4001991 217725 64 160 270918 5096 1685160 64724

2 4175661 208862 0 96 303913 5267 1742245 65406

3 3908973 213590 0 0 286916 5430 1610544 66424

4 4101762 209785 64 128 254847 5080 1640377 66063

5 3932938 217326 0 64 314963 5100 1580184 65686

6 4166149 192101 0 0 248305 4533 1821616 65143

7 3851738 200694 0 288 225611 4758 1654915 64449

IO 978887 0 0 0 12 0 0 16232121

TABLE 1. Breakdown of references in the first trace sample in each processor

Sample read read-excl clean ikill write/inv write/clean upgrade write/flush

1 33062700 1682082 128 928 2200703 40941 13364264 16757118

2 29574629 1446244 0 2272 2677942 43781 10059975 23304021

3 28717853 1335718 0 0 2835185 35304 10637496 23547308

4 27727985 1405457 6432 6720 2900043 54407 8734182 26273638

5 25799000 1774029 0 0 3067320 51339 9517591 26899585

6 28760710 4021657 96 96 6077446 44147 6367359 21837353

7 29087095 1959379 0 608 2953071 57934 7265500 25785277

8 28830726 1929086 0 160 2866096 59072 7312608 26111116

9 26092006 1970931 96 320 3206843 57642 7186243 28594783

10 26899985 1768684 72 66 3279821 50629 7148337 27961270

11 36070868 1079535 0 0 2009423 96048 10462970 17390020

12 36516311 1108966 50560 51936 2159616 145164 10631200 16445111

Avg (%) 44.35 2.66 0.01 0.01 4.50 0.09 13.50 34.88

TABLE 2. Reference count per transaction type in the 12 trace samples

Write-Flush: Invalidate the block.

IO requests:
There are 3 types of IO requests: IO Read, IO

Write and IO Write Flush. By far write flushes are the
dominant request type. The request are treated differ-
ently, depending to the policy to deal with IO requests.

In IO-invalidate, the shared cache is invalidated on
all IO references. In IO-update, the block is updated in
the case of a hit and its LRU statistics are updated. In
IO-allocate the IO references are treated as if they
were coming from execution processors.

The miss rate counts reported in this abstract do not
include misses due to IO since they are not on the crit-
ical path of processors’ execution.

4. Cache Warm-up Rates

4.1. Cache Blockframe Warm-up Rates

Figure 3 shows the average fraction of warm block-
frames as a function of the reference number across all
12 samples for each of the four clustering schemes.
We simulate each trace sample starting with empty
caches. A blockframe is deemed warm after a block
has been allocated to it for the first time. For every
number of references, we calculate the average num-
ber of warm blockframes across all samples. The
shared cache size varies from 64MB to 1GB. From the
graphs, we see that shared caches larger than 128MB
are never completely warm with 64M references.

4.2. Cache Set Warm-up Rate

Figure 4 shows the warm-up rate of cache sets. A
cache set is deemed warm once all its blockframes
have been accessed at least once. The graphs indicate
that the cache set warm-up rate is much lower than the
cache blockframe warm-up rate for large caches. This
implies that cold blockframes are spread among many
cache sets.

If the trace-driven simulation of very large shared
caches only uses the references to warm cache sets, the
evaluation will be naturally biased to a (relatively)
small number of hot cache sets. Thus this approach is
debatable since a good set sampling strategy might
produce a more usable trace. Thus collecting statistics
on warm sets only as was proposed in [5] is not
acceptable.

5. Shared Cache Miss Rate Classification

To evaluate the performance of shared cache archi-
tectures with the trace samples, we use the miss rate as
a metric. We decompose misses into the following
four categories: cold misses, coherence misses due to
IO, replacement misses, and upgrade misses. To do
this, we first check whether a block missing in the
cache was previously referenced. If it was not and is
not preceded by an IO invalidation, the miss is classi-
fied as a cold miss. If the missing block was the target
of an IO-invalidation before the miss is a deemed a
coherence miss due to IO, irrespective of other reasons
that may have caused the miss. Otherwise, the miss is
due to replacement.

An upgrade miss happens when an upgrade request

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

num ber o f re ferences (220)

0

10

20

30

40

50

60

70

80

90

100

w
ar

m
 b

lo
ck

s
(%

)

4-way

64M B
128M B
256M B
512M B
1G B

Figure 3. Blockframe Warm-up
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

num ber of references (220)

0

10

20

30

40

50

60

70

80

90

100

w
ar

m
 s

et
s

(%
)

4-way

64MB
128MB
256MB
512MB
1GB

Figure 4. Set Warm-up Rate

on the bus misses in the shared cache. Upgrade misses
do not occur when cache inclusion between the pro-
cessors’ L2 caches and the shared cache is maintained,
which is not the case here.

To understand the cold-start bias better, cold
misses are further decomposed into cold-cold misses
and warm-cold misses. A cold-cold miss occurs on a
cold miss such that a cache blockframe is allocated in
a set that is not filled yet. A warm-cold miss occurs on
a cold miss in a set that is already filled.

The reason for separating the types of cold misses
is that cold-cold misses may not be actual misses if the
trace was continuous. These misses are called
unknown references in [10]. On the other hand warm-
cold misses are sure misses, although we don’t know
what kind of miss they really would be in the full
trace.

We analyze the components of the miss rate assum-
ing that the shared cache is empty at the beginning of
each sample. To calculate the miss rate, we apply each
trace sample to empty caches and then we sum up all
the misses and legitimate memory references (the ones
listed in Table 1) in each sample.

Figure 5 for 1KByte blocks shows that a large frac-
tion of misses are due to IO coherence in the IO-inval-
idate system. This component is not present in IO-
update or IO-allocate.

As the cache size increases, cold-cold misses
become a dominant part of the cold miss component,
and the large number of cold-cold misses in very large
caches shows that the error due to cold start is signifi-
cant for these systems.

6. Sure vs. Unknown References

An interesting classification is between sure and
unknown references [10]. Sure references are refer-
ences such that we know for sure that they would hit
or miss in the full trace. Unknown references are refer-
ences for which we cannot decide whether they would
hit or miss in the full trace. Of course all hits are sure
references. Cold-cold misses that are not preceded by
an IO-invalidate are unknown references. All other
misses are sure references.

Thus we can classify the miss rates as sure miss
rate or unknown miss rate. The maximum miss rate is
the ratio of the number of all misses and the number of
all references. The sure miss rate is the lower bound on
the miss rate. It is the ratio of the number of sure
misses by the number of sure references. The
unknown miss rate is the difference between the maxi-
mum miss rate and the sure miss rate. In the IO-invali-
date case, the sure miss rate can be decomposed in the
sure miss rate due to IO and other sure miss rate. This
is shown in Figure 6. The white component at the top
is the zone of uncertainty. That’s what we also call the
unknown miss rate. It shows the error range for the
results based on our samples.

The sure miss rate in Figure 6 (in blue and red) is a
lower bound on the expected miss rate. The assump-
tion for this lower bound is that the unknown refer-
ences have the same hit/miss behavior in the full trace
as other references. However, it has been shown that
the unknown references tend to miss more than others
[10]. The black line superimposed to the stack bar

Figure 5. Miss rate classification

64M 1 28M 256M 51 2M 102 4M
cache size

0

5

10

15

20

25

M
iss

 ra
tio

IO -Invalidate, 4-way,1024 byte

cold-cold
cold-warm
coh-IO
repl
upgrade

6 4 M 12 8 M 2 56 M 5 12 M 10 2 4 M
c ac he s ize

0

5

1 0

1 5

2 0

2 5

M
is

s
ra

tio

IO -U pda te,4 -w ay,1024 byte

6 4 M 12 8 M 2 56 M 5 12 M 1 0 2 4M
ca ch e s iz e

0

5

1 0

1 5

2 0

2 5

M
iss

 ra
tio

IO -A llocate, 4 -w ay, 1024 byte

cold-cold
cold-warm
repl
upgrade

cold-cold
cold-warm
repl
upgrade

chart shows the average between the maximum miss
rate and the sure miss rate. In [10] it was shown to be a
pretty good estimate of the actual miss rate.

When the block size is 128B, the zone of uncer-
tainty is quite large, but for 1KB blocks, the zone of
uncertainty is small. Obviously, under IO-invalidate
the 1KB block size is a much better choice and it defi-
nitely pays to add more shared cache in this case.

Figure 7 shows the impact of the strategy for IO
bus requests. When the block size is 128 bytes, the
strategy used for IO bus requests does not make much
difference and this is a reliable result, since the zone of
uncertainty is very small. However, when the block
size is 1Kbytes, we see that potentially IO-update and
IO-allocate strategies could make a big difference, but
the zone of uncertainty is too large in this case to be
conclusive.

Finally Figure 8 shows the effect of the block size
and the cache organization. We see that the block size
has a huge impact on performance but that the organi-
zation of the cache does not matter much. Obviously
conflict misses are few and far between. This is a reli-
able conclusion given the small size of the zones of
uncertainty.

7. Conclusion

In this work, we have used 12 time samples of

TPC-H collected during its first day of execution. The
trace samples have been used to evaluate various
architectures for a shared caches in a typical SMP sys-
tem with 8 processors. We have looked at block sizes,
cache sizes, cache organizations and strategies to han-
dle IO requests. Because of cold start effects in each
sample, we are not able to draw definite conclusions
on all aspects of the shared cache architecture. Cold
start effects in each sample result in a zone of uncer-
tainty due to unknown references.

We have observed the following:
• Even small shared caches of 64 Mbytes

(equal to the aggregate L2 cache size) is
very effective, due to sharing and non inclu-
sion

• A block size of 1Kbyte is much better than a
block size of 128 bytes.

• The cache organization does not affect per-
formance much. Thus a simple Direct
mapped cache is probably preferable. This
indicates few conflicts in the shared cache

• With a 1GB cache and a block size of 1KB
the shared cache miss rate is only a few per-
cents

• It would appear that for larger caches the
strategy for handling IO requests (IO-invali-

64M 128M 256M 512M 1024M
0

5

10

15

20

25

M
iss

 ra
tio

IO -Inva lida te, 4 -w ay, 1024byte

sure m iss ra te due to IO
sure m iss ra te no t due to IO
unknow n

64M 128M 256M 512M 1024M
0

5

10

15

20

25

M
iss

 ra
tio

64M 128M 256M 512M 1024M
cache size

IO -Invalida te , 4 -w ay, 128 byte

sure m iss rate due to IO
sure m iss rate not due to IO

unknown

cache size

0

5

10

15

20

25

M
iss

 R
at

io

Figure 6. Miss Rates of a 4-way Shared Cache with IO Invalidate
cache s ize

date, IO-update or IO-allocate) may have a
large impact on the miss rate. However the
zone of uncertainty is too large to draw defi-
nite conclusions.

We are trying to narrow the zone of uncertainty to
get more conclusive evidence. Since the MemorIES
board can emulate target cache systems in real time,
we can use the time between samples to emulate a set
of caches with different architectures and fill these
caches up before the next sample is taken so that we
have the content of these caches at the beginning of
each sample. The content of these emulated caches is
dumped with the sample at the end of each time sam-
ple. By playing with cache inclusion properties [9], the
content of these few emulated caches can be used to
restore the state of many different cache configura-
tions at the beginning of each sample, thus eliminating
the cold start effect. In this framework, a trace collec-
tion experiment consists of several phases, repeated
for each time sample: a phase in which we emulate the
target caches to get the snapshots, the trace sample
collection phase, and the trace dump phase in which
the snapshots and the trace samples are dumped to
disk.

Once we have the trace with the cache snapshots
we will be able to firm up the conclusions of this
paper.

8. Acknowledgments

This work is supported by NSF Grant CCR-
0105761 and by an IBM Faculty Partnership Award.
We are grateful to Ramendra Sahoo and Krishnan
Sugavanam from IBM Yorktown Heights who helped
us obtain the trace.

Figure 7. Miss Rates Comparison Between Various Cache Strategies for IO Requests.

0

5

10

15

20

25

M
iss

 R
at

io

4 -w ay. 1024 byte b lock.

sure m iss ra te due to IO
sure m iss ra te no t due to IO
unknow n

64M B/
IN VAL

64M B /
U P D

64M B /
ALLO C

1G B/
IN VA L

1G B/
U P D

1G B/
A LLO C

0

5

10

15

20

25

4-w ay.128 byte b lock

sure m iss rate due to IO
sure m iss rate not due to IO

unknown

64M B /
IN V AL

64M B/
U PD

64M B/
ALLO C

1G B /
IN VAL

1G B/
U PD

1G B/
ALLO C

M
iss

 R
at

io

0

5

10

15

20

25

IO -Inva lidate

sure m iss rate due to IO
sure m iss rate not due to IO
unknown

4way
128B

 DM
128B

4way
1KB

 DM
1KB

4way
128B

 DM
128B

4way
1KB

 DM
1KB

64M Byte
cache

1GByte
cache

M
iss

 R
at

io

Figure 8. Effect of Cache Organization and Block Size

9. References

[1] L. Barroso, K. Gharachorloo and E. Bugnion,
“Memory System Characterization of Commercial
Workloads,” In Proceedings of the 25th ACM
International Symposium on Computer Architecture,
June 1998.

[2] J. Chame and M. Dubois, “Cache Inclusion and
Processor Sampling in Multiprocessor Simulations,” In
Proceeding of ACM Sigmetrics, pp. 36-47, May 1993.

[3] J. Jeong, R. Sahoo, K. Sugavanam, A. Nanda and
M. Dubois, “Evaluation of TPC-H Bus Trace Samples
Obtained with MemorIES” Workshop on Memory
Performance Issues, ISCA 2001, http://
www.ece.neu.edu/conf/wmpi2001/full.htm.

[4] R. Kessler, M. Hill and D. Wood, “A Comparison
of Trace-Sampling Techniques for Multi-Megabyte
Caches,” IEEE Transactions on Computers, vol. 43,
no. 6, pp. 664-675, June 1994.

[5] S. Laha, J. Patel, and R.K. Iyer, “Accurate Low-cost
Methods for Performance Evaluation of Cache
Memory Systems, IEEE Transactions on Computers,
pp. 1325-1336, Vol. 37, No. 11, Nov. 1988.

[6] A. Nanda, K. Mak, K. Sugavanam, R. Sahoo, V.
Soundararajan, and T. Basil Smith, “MemorIES: A
Programmable, Real-Time Hardware Emulation Tool
for Multiprocessor Server Design,” In Proceedings of
Ninth International Conference on Architectural
Support for Programming Languages and Operating
Systems, Nov. 2000.

[7] T. R. Puzak, “Analysis of Cache Replacement-
Algorithms,” Ph.D. Dissertation, Univ. of
Massachusetts, Amherst, MA., Feb. 1985.

[8] Transaction Processing Performance Council,
“TPC Benchmark H Standard Specification,”
Transaction Processing Performance Council, June
1999. http://tpc.org.

[9] W. Wang and J. L. Baer, “Efficient Trace-Driven
Simulation Methods for Cache Performance Analysis,”
ACM Transactions on Computer Systems, vol. 9, no. 3,
pp. 222-241, August 1991.

[10] D. Wood, M. Hill, and R. Kessler, “A Model for
Estimating Trace-Sample Miss Ratios,” In
Proceedings of the ACM Sigmetrics Conference on
Measurement and Modeling of Computer Systems, pp.
27-36, 1990.

[11] P. Yeh, J. Patel, and Ed. Davidson,

“Performance of Shared Cache for Parallel-
Pipelined Computer Systems,” In Proceedings of
the ACM International Symposium on Computer
Architecture, pp. 117-123, 1983.

Precise and Accurate Processor Simulation
Electrical and Computer Engineering
University of Wisconsin
1415 Engineering Drive

Madison, WI 53706
{lepak,mikko}@ece.wisc.edu

n A. Schwartz, and Mikko H. Lipasti

Computer Sciences Department

University of Wisconsin
1210 W. Dayton Street

Madison, WI 53706
{cain,baschwar}@cs.wisc.edu

Abstract

Harold W. Cain, Kevin M. Lepak, Brando
Precise and accurate simulation of processors and com-
puter systems is a painstaking, time-consuming, and
error-prone task. Abstraction and simplification are
powerful tools for reducing the cost and complexity of
simulation, but are known to reduce precision. Similarly,
limiting and simplifying the workloads that are used to
drive simulation can simplify the task of the computer
architect, while placing the accuracy of the simulation at
risk. Historically, precision has been favored over accu-
racy, resulting in simulators that are able to analyze
minute machine model variations while mispredicting—
sometimes dramatically—the actual performance of the
processor being simulated. In this paper, we argue that
both precise and accurate simulators are needed, and
provide evidence that counters conventional wisdom for
three factors that affect precision and accuracy in simu-
lation. First, we show that operating system effects are
important not just for commercial workloads, but also
for SPEC integer benchmarks. Next, we show that sim-
ulating incorrect speculative paths is largely unimpor-
tant for both commercial workloads and SPEC integer
benchmarks. Finally, we argue that correct simulation of
I/O behavior, even in uniprocessors, can affect simulator
accuracy.

1.0 Introduction and Motivation
For many years, simulation at various levels of abstraction
has played a key role in the design of computer systems.
There are numerous compelling reasons for implementing
simulators, most of them obvious. Design teams need sim-
ulators throughout all phases of the design cycle. Initially,
during high-level design, simulation is used to narrow the
design space and establish credible and feasible alterna-
tives that are likely to meet competitive performance
objectives. Later, during microarchitectural definition, a
simulator helps guide engineering trade-offs by enabling
quantitative comparison of various alternatives. During
design implementation, simulators are employed for test-
ing, functional validation, and late-cycle design trade-offs.
Finally, simulators provide a useful reference for perfor-
mance validation once real hardware becomes available.

Outside of the industrial design cycle, simulators are also
heavily used in the computer architecture academic
research community. Within this context, simulators are
primarily used as a vehicle for demonstrating or comparing
the utility of new architectural features, compilation tech-
niques, or microarchitectural techniques, rather than for
helping to guide an actual design project. As a result, aca-
demic simulators are rarely used for functional or perfor-
mance validation, but strictly for proof of concept, design
space exploration, or quantitative trade-off analysis.
Simulation can occur at various levels of abstraction.
Some possible approaches and their benefits and draw-
backs are summarized in Table 1. For example, flexible
and powerful analytical models that exploit queueing the-
ory can be used to examine system-level trade-offs, iden-
tify performance bottlenecks, and make coarse
performance projections. Alternatively, equations that
compute cycles per instruction (CPI) based on cache miss
rates and fixed latencies can also be used to estimate per-
formance, though this approach is not effective for systems
that are able to mask latency with concurrent activity.
These approaches are powerful and widely employed, but
will not be considered further in this paper. Instead, we
will focus on the last three alternatives: the use of either
trace-driven, execution-driven, or full-system simulation
to simulate processors and computer systems.
Trace-driven simulation utilizes execution traces collected
from real systems. Collection schemes range from soft-
ware-only schemes that instrument program binaries all
the way to proprietary hardware devices that connect to
processor debug ports. The former pollute the collected
trace, since the software overhead slows program execu-
tion relative to I/O devices and other external events. The
latter can run at full speed, but require expensive invest-
ment in proprietary hardware, knowledge of debug port
interfaces, and are probably not feasible for future multi-
gigahertz processors. Trace collection is also hampered by
the fact that usually only non-speculative or committed
instructions are recorded in the trace. Hence, the effects of
speculatively executed instructions from incorrect branch
paths are lost. Furthermore, once a trace has been col-

lected, the cost associated with the disk space used to store
the trace may be a limiting factor.
Prior work has argued that trace-driven simulation is no
longer adequate for simulating modern, out-of-order pro-
cessors (e.g. [1]). In fact, the vast majority of research
papers published today employ execution-driven simula-
tion and utilize relatively detailed and presumably precise
simulation. A recent paper argued that precise simulation
is very important and can dramatically affect the conclu-
sions one might draw about the relative benefits of specific
microarchitectural techniques [6]. Some of these conclu-
sions were toned down in a subsequent publication [5].
One can reasonably conclude that the majority of recently
published computer architecture research papers place a
great deal of emphasis and effort on precision of simula-
tion, and researchers invest large amounts of time imple-
menting and exercising detailed simulation models.
In this paper, we show that conventional approaches to
exercising processor simulators do so poorly vis-a-vis
accuracy that, practically speaking, precision is unimpor-
tant. We argue that the correct approach is to build a simu-
lator that is both precise and accurate. We accomplish this
by building a simulator--PHARMsim--that does not cheat
with respect to any aspect of simulation. Without the
investment in such a simulator, we assert that it is impossi-
ble to determine whether or not the right abstractions and
simplifications have been applied to either the simulator or
the workload that is driving it.
We provide evidence that counters conventional wisdom
for three factors that affect precision and accuracy in simu-

lation. First, we show that operating system effects are
important not just for commercial workloads (as shown by
[8] and numerous others), but also for SPEC integer
benchmarks [13]. Surprisingly, omitting the operating sys-
tem can introduce error that exceeds 100% for benchmarks
that, according to conventional wisdom, hardly exercise
the operating system. Next, we show that simulating incor-
rectly predicted speculative paths is largely unimportant
for both commercial workloads and SPEC integer bench-
marks. In most cases, even with an aggressively specula-
tive processor model that issues twice as many instructions
as it retires, the bottom line effect on performance is usu-
ally less than 1%, and only 2.4% in the worst case. Finally,
we argue that correct simulation of I/O behavior, even in
uniprocessors, can affect simulator accuracy. We find that
a direct-memory-access (DMA) engine that correctly mod-
els the timing of cache line invalidates to lines that are
written by I/O devices can affect miss rates by up to 2%
and performance by up to 1%, even in a uniprocessor with
plenty of available memory bandwidth.
We have found that the main drawback of a simulator that
does not cheat is the expense and overhead of correctly
implementing such a simulator. For example, since our
DMA engine implementation relies on the coherence pro-
tocol to operate correctly, the coherence protocol must be
correctly implemented. Similarly, since the processors
actually read values from the caches, rather than cheating
by reading from an artificially-maintained flat memory
image, DMA and multiprocessor coherence must be cor-
rectly maintained in the caches. Furthermore, within the
processor core, the register renaming, branch redirection,

Modeling Technique Inputs Benefits Drawbacks

Analytical models Cache miss rates; I/O rates Flexible, fast, convenient, pro-

vide intuition

Cannot model concurrency;

lack of precision

CPI Equations Core CPI, cache miss rates Simple, intuitive, reasonably

accurate

Cannot model concurrency;

lack of precision

Trace-driven Simulation Hardware traces; software

traces

Detailed, precise Trace collection challenges;

lack of speculative effects;

implementation complexity

Execution-driven Simulation Programs, input sets Detailed, precise, speculative

paths

Implementation complexity;

simulation time overhead; cor-

rectness requirement; lack of

OS and system effects

Full-system, execution-driven

simulation (PHARMsim)

Operating system, programs,

input sets, disk images

Detailed, precise, accurate Implementation complexity,

simulation time overhead, cor-

rectness requirement
TABLE 1. Attributes of various performance modeling techniques.

store queue forwarding, etc., must all operate correctly for
the simulator to follow the correct path. Of course, this
drawback is also an advantage: forcing a correctness
requirement also forces us, as researchers, to be more thor-
ough and realistic about the techniques that we propose,
since we cannot “cheat” when we implement them in our
simulator. Counter to our initial expectation, the simula-
tion-time overhead of our simulator is surprisingly low,
compared to competitive trace- or execution-driven simu-
lators.
Section 2 provides further discussion on precision and
accuracy and how they relate to processor simulation; Sec-
tion 3 presents details of our PHARMsim simulation envi-
ronment; Section 4 provides evidence for our three claims
concerning operating system effects, speculative wrong-
path execution, and DMA implementation; and Section 5
discusses conclusions and implications of our findings.

2.0 Flexibility, Precision, and Accuracy
As discussed already, design teams need simulators
throughout all phases of the design cycle. As shown in
Figure 1, the precision of a simulator tends to increase as
the project proceeds from high-level design to later design
stages. Here, we define precision as a measure of the fidel-
ity of the simulated machine to the actual machine, as the
machine is first envisioned and finally realized by its
designers. The simulator’s precision increases as a natural
side effect of the needs of the designers; as the design itself
is refined and more precisely defined, making quantitative
design trade-offs requires a more precise simulator. Hence,
additional features are added to the simulator to model
these details. On some development projects, a separate
performance simulator effectively disappears, and is
replaced by simulation of register-transfer-level models
expressed in a hardware-definition language (HDL).
As a consequence of increasing precision, flexibility in
turn decreases. By flexibility we mean the ability of the

simulator to continue to explore a broad design space. As
more and more features are modeled precisely, it becomes
increasingly difficult to support design space exploration
that strays too far from the chosen direction. This trend
also mirrors what is occurring in development; the further
the project is from its initial concept, and the closer it is to
final realization, the more difficult it becomes to make the
major changes required by a broad change in the high-level
design.
Besides flexibility and precision, there are several addi-
tional important attributes that characterize a simulator or
simulation approach. These include simulation speed,
functionality, usability, and accuracy of simulation. The
accuracy of a simulator gauges its ability to closely model
the real-world behavior of the processor or system being
simulated, and manifests itself through simulated perfor-
mance results that closely match the performance of the
real system.
Accuracy is determined by two factors: again, by how
closely the model matches the actual design (i.e. preci-
sion), but also by how the model is driven: how realistic is
the “input” to the model? In general, analytical models and
even fixed latency CPI equation models, as presented in
Table 1, can be reasonably accurate, but are not very pre-
cise. Hence they are commonly used in industry, particu-
larly for performance projections and competitive analysis,
as well as early-stage feasibility and proof-of-concept
analyses.
In contrast, academic researchers are prone to spend a
great deal of time and energy building detailed simulation
models that provide lots of precision, so that minute
microarchitectural trade-offs can be studied thoroughly
and exhaustively. Of course, the level of detail in an aca-
demic simulator must match the purpose of the study. For
example, high-level limit studies are appropriately conduct
with abstract and flexible models. On the other hand,
detailed trade-off analyses must be made with fairly pre-
cise models. Some academic work exists that attempts to
quantify simulator accuracy [2, 6].
Unlike precision, which can be quantified and rectified rel-
atively early in the design cycle, accuracy is much more
difficult to measure. Precision can be quantified by exer-
cising both the performance simulator and progressive reg-
ister-transfer-level realizations of the design with identical
test cases, and the cycle-accurate results can be compared
and reconciled to correct either the simulator or the design.
This is in fact a natural side effect of the performance vali-
dation that should occur during a properly managed design
cycle.
However, accuracy cannot be so easily determined, since
accuracy depends not only on the simulator’s precision,

FIGURE 1. Use of Simulation During Design.

Design and
Implementation

VerificationHigh-level
Design

Microarchitectural
Definition

Design Space
Exploration

Quantitative
Tradeoff
Analysis Functional validation

Late design changes

Performance
Validation

Precision
Flexibility

but also on how closely the inputs to the simulation match
the real-world environment in which the system being
designed will ultimately operate. It is usually considered
extremely difficult to recreate these circumstances in such
a way that they can be used to drive a detailed performance
simulator.
The initial work on full-system simulation from the Stan-
ford SimOS project [10] established that this is indeed pos-
sible. However, the complexities of doing so have
effectively deterred the majority of the research commu-
nity from adopting full-system simulation into their reper-
toire. We emphatically agree with other proponents of full-
system simulation and argue that all architecture research-
ers should seriously consider adoption of full-system simu-
lation, despite the up-front cost of doing so. The evidence
in Section 4 strongly supports the assertion that simulators
that ignore system effects, no matter how precise, are
likely to be so inaccurate as to be useless, even for CPU
intensive benchmarks like SPECINT 2000.
In practice, the accuracy of a performance simulator is
usually not evaluated until it’s “too late,” that is to say
after hardware is available and stable enough to boot an
operating system and run real workloads. At this point, due
to several generations of software changes and numerous
potentially compensating errors, it becomes very difficult
to precisely quantify the accuracy of a performance model.
Furthermore, from a practical standpoint, doing so is only
useful from an academic and quality assurance viewpoint,
and is not driven by immediate design needs. Hence, at
least in our experience, such an evaluation is either per-
formed poorly or not at all.

3.0 PharmSim Overview
We have constructed a PowerPC-based simulation infra-
structure using the SimOS-PPC and SimpleMP simulators.
SimOS is a complete machine simulation environment
consisting of simulators for the major components of a
computer system (cpus, memory hierarchy, disks, console,
ethernet) [10]. We use a version of SimOS which simu-
lates PowerPC-based computer systems running the AIX
4.3 operating system [7]. SimpleMP is a detailed execu-
tion-driven multiprocessor simulator that simulates out-of-
order processor cores, including branch prediction, specu-
lative execution and a cache coherent memory system[9]
using a Sun Gigaplane-XB-like coherence protocol [4].
Integrating the SimpleMP simulator into SimOS required
significant changes to SimpleMP in order to accurately
support the PowerPC architecture. In this section, we dis-
cuss these modifications.
SimpleMP was missing much of the functionality neces-
sary to support system level code, in both the processor
core and memory system. We augment SimpleMP with

support for all of the instructions (system-mode and user-
mode) in the PowerPC instruction-set architecture. For
some of the relatively complex PowerPC instructions (e.g.
load/store string instructions) we use an instruction-crack-
ing scheme similar to that used in the POWER4 processor
which translates a PowerPC instruction into several sim-
pler RISC-like operations [14]. We also augment the pro-
cessor core with support for precise interrupt handling and
PowerPC context-synchronizing instructions (e.g., isync,
rfi).
The SimpleMP memory system required major changes in
order to support unaligned memory references, PowerPC
address translation, and the set of PowerPC cache manage-
ment instructions. To handle unaligned memory references
(which are allowed in the PowerPC architecture) the pro-
cessor core splits each unaligned memory reference that
crosses a cache block boundary into two smaller aligned
references which are then each issued to the SimpleMP
memory system.
In order to accurately model PowerPC virtual memory
hardware, we were forced to implement a PowerPC mem-
ory management unit (MMU) from scratch, including a
translation lookaside buffer (TLB), TLB refill mechanism,
and reference and change bit setting hardware. On a TLB
miss, we simulate a hardware TLB miss handler which
walks the page table by issuing memory references to the

Processor Parameters

decode/issue/com-

mit width

8/8/8

RUU/LSQ size 128/64

Functional Units 8 Int ALUs, 3 Int Mult/Div, 3 FP

ALUs, 4 FP Mult/Div 3 LD/ST

Ports

Branch Predictor Combined bimodal (8k entry)/

gshare (8k entry) with 8k choice

predictor, 8k 4-way SA BTB, 64

entry RAS

Memory System

L1 I Cache (latency) 64K 2 way set associative (1 cycle)

L1 DCache (latency) 256K 4 way set associative (1

cycle)

L2 Unified Cache 4MB 4 way set associative (10

cycles)

blocksize (all caches) 64 bytes

DRAM latency 70 cycles
TABLE 2. Simulation Parameters.

simulated memory hierarchy. In the event of a memory
management exception (e.g., page fault, protection excep-
tion), the MMU signals the processor which traps to the
appropriate OS exception handler. The MMU also main-
tains and updates a page’s reference and dirty bits by issu-
ing single-byte stores to the simulated memory hierarchy
when a page whose reference or change bit is not set is first
referenced or written.
The PowerPC architecture includes many cache manage-
ment instructions (e.g. data cache block invalidate, data
cache block zero, etc.) which are used in both system and
user-level code. Implementing each of these instructions
required significant changes to the SimpleMP coherence
protocol.
We also augment the SimpleMP memory system to sup-
port coherent I/O. Both SimpleMP and SimpleScalar [3]
perform I/O “magically” by proxying system calls and
instantaneously updating a cache’s contents to reflect the
new memory contents. Obviously, this mechanism does
not accurately model how I/O is performed in real systems.
To accurately model coherent I/O, we added support to
SimOS and SimpleMP for I/O controllers to initiate DMA
transfers into memory and invalidate the corresponding
blocks in each processor’s caches.
For all of the data presented in this paper, we use the
machine configuration summarized in Table 2.

4.0 Sources of Inaccuracy
In this section, we study three possible sources of inaccu-
racy in processor simulation, and quantify their effects on
a set of SPECINT2000 and commercial server workloads.
The three case studies are the effect of operating system

paths, the effect of direct memory access (DMA) transfers
caused by disk input/output (I/O), and the effect of specu-
latively executed incorrect branch paths.
We are able to study these effects in detail only because we
have implemented a simulator that does not cheat. The vast
majority of prior simulation work either assumes that these
effects are insignificant, and fails to consider them, or,
assuming the opposite, do implement them but do not
quantify the necessity of this implementation overhead.
We present these three case studies to examine if and how
inaccuracy is introduced into simulation, and to quantify
how relatively important each of these effects is. Current
practice in the architecture research community focuses
lots of effort on wrong-path execution, and arguably trades
off investment in the other two factors to capture wrong-
path behavior.

4.1 Operating System Effects
The first effect we study has been examined at length in
prior work, particularly for commercial workloads that
spend a nontrivial fraction of execution time in the operat-
ing system (e.g. [8]). However, conventional wisdom
holds that the SPECINT2000 benchmarks spend very little
time in the operating system, and can be safely modeled
with user-mode instructions only. Our experience with
PHARMsim, however, has shown that this is a fallacy. Our
detailed simulations have shown that ignoring the effects
of operating system instructions can lead to errors of 100%
or more when executing SPECINT2000 benchmarks. A
detailed analysis of these findings is beyond the scope of
this paper, and is left to future work. However, we do
present evidence here that helps explain this unanticipated
source of error.

FIGURE 2. Cache effect of simulating the whole system.

The stacked bars show misses to an 8MB, 4-way set-associative cache with 64B lines due to instruction fetches, loads,
and stores, normalized to the rightmost case where the whole system is simulated. The leftmost case shows the effects of
program references only. The second case adds shared library code, the third case adds operating system code, and the
rightmost case adds cache control instructions issued by the operating system. The worst-case error, in MCF, is 5.8x.

crafty gap gcc gzip mcf parser perlbmk vortex specjbb specweb
Benchmark

0.0

1.0

2.0

3.0

4.0

5.0

6.0

N
or

m
. L

2
M

is
se

s

I-Fetch
Load
Store

Figure 2 summarizes off-chip memory traffic for the set of
benchmarks we studied, which includes eight of the
SPECINT2000 benchmarks and two multiuser commercial
workloads, SPECWEB99 and SPECJBB2000 [13]. The
stacked bars show misses from an 8MB, 4-way set-asso-
ciative cache with 64B lines. Miss rates are normalized to
the correct case, where all references generated by both the
user-mode program, shared libraries, operating system,
and special cache control instructions are properly
accounted for. The four stacked bars for each benchmark
show, from left to right, the effects of the user program
only, additional effects from shared library code, addi-
tional effects from all of the operating system, and, in the
rightmost case, additional effects from special PowerPC
cache control instructions issued by the operating system.
These four cases roughly correspond to simulation
approaches used in the past: the leftmost case to trace-col-
lection schemes like Atom [12] that instrument and trace
user programs only (later versions of Atom handled shared
libraries and even parts of the operating system); the sec-
ond case to a tool like Simplescalar that requires statically-
linked objects and then performs system-call translation
[3]; the third case to a tracing technique that captures all
loads, stores, and instruction fetches by recording off-chip
bus signals, but fails to capture explicit cache control refer-
ences that avoid such signals; and finally, a full-system
simulator like PHARMsim that captures and correctly
models all references that affect the cache.
In all cases, we see that more references are captured, and
additional misses generated, as we proceed from modeling
only the user program’s references to modeling all of the
operating system. In the worst case (perlbmk), the number
of misses more than doubles, and is significant even in the
best case (specjbb).
However, interestingly enough, adding the effects of spe-
cial cache control instructions reverses this direction, and
dramatically reduces the number of misses that the cache

model encounters. This behavior is caused by the AIX
operating system’s aggressive use of the PowerPC dcbz
(data cache block zero) instruction. This instruction writes
an entire cache line with zeroes. Aggressive hardware
implements this instruction by avoiding an off-chip mem-
ory reference even when it misses the cache, since the
whole line will be overwritten by the instruction. This
instruction is similar to the wh64 (write hint 64) instruction
in the Alpha instruction set [11].
We have analyzed the use of dcbz in the AIX operating
system, and have found that the page fault handler issues a
series of dcbz instructions that span the entire 4K virtual
memory page whenever a program page faults on a new,
previously unmapped page. This is a legitimate optimiza-
tion, since a newly mapped page cannot contain any valid
data. Hence, the operating system can safely zero out the
page before returning to the user. As a side effect, the pro-
gram can avoid cache misses to newly referenced pages,
since the dcbz instructions directly install those lines into
the cache.
The effect of the dcbz instructions is particularly pro-
nounced for the mcf benchmark, which allocates and ini-
tializes tens of megabytes of heap space to store its internal
data structure. Naive simulation, whether of the user pro-
gram only, or even including operating system effects, can
dramatically overstate—to the tune of 5.8x—the number
of cache misses encountered by this program. Note that
virtually all of the store misses, which dominate the mem-
ory traffic of this benchmark, disappear when the dcbz
instructions are correctly modeled. There is a similar,
though less pronounced, trend for all of the other work-
loads except specjbb. We attribute specjbb’s behavior to
the fact that we are capturing a snapshot of steady-state
execution for this benchmark, rather than end-to-end pro-
gram execution. As a result, memory has already been
allocated and initialized, and the AIX page fault handler
does not issue dcbz instructions.

FIGURE 3. % Executed Instructions on Wrong Path.

0 %
1 0 %
2 0 %
3 0 %
4 0 %
5 0 %
6 0 %
7 0 %
8 0 %
9 0 %

1 0 0 %

cra
fty ga

p
gc

c
gz

ip mcf

pa
rse

r

pe
rlb

mk
vo

rte
x

sp
ec

jbb

sp
ec

web

b e n c h m a r k

%
ex

ec
ut

ed
 in

st
 o

n
w

ro
ng

 p
at

h

We suspect that other operating systems have similar opti-
mizations in their page fault handlers, though we currently
have no way of verifying this fact. However, the fact that a
detailed, precise, simulator described in a recent study [6]
reflected a roughly 20% error on many real benchmarks
leads us to believe that such optimizations are widespread
and dramatically impact the accuracy of simulation that
ignores operating system references.

4.2 Direct Memory Access (DMA)
High-performance systems use some form of autonomous,
coherent, I/O agent to perform I/O requests in the system
using DMA. This mechanism allows the processor to con-
tinue performing other tasks (for example, run another
ready process) while the I/O request serviced. Most current
simulators either handle I/O through system call proxy or
perform the I/O into a flat memory image. Performing flat-
memory I/O is functionally correct in simulators which do
not include values in cache models, because all values are
obtained from the flat memory. However, using this tech-
nique the state of cachelines accessed by the I/O agent can
be incorrect in one of two ways: 1) In the case of a DMA
write (i.e. write to memory, read from I/O device), the line
should be marked invalid in the processor’s cache; 2) In
the case of a DMA read (i.e. read from memory, write to I/
O device), the line should become shared.1
In execution driven simulators which track memory values
throughout the hierarchy (i.e. SimpleMP) I/O causes an
additional problem. Since multiple coherence transactions
pertaining to regions of memory subject to I/O can be in
flight (i.e. a cache block may be in a pending state in mul-
tiple caches at the time of an I/O request), the system must
be quiesced (i.e. all processor and coherence activity must
stop) to effectively flatten the memory image. The I/O can
then be performed with any updated values copied (magi-
cally, bypassing the performance model) into processors’
caches to maintain a consistent view of memory.

In PHARMsim, in order to determine the effect of cache
state errors due to disk I/O activity, as well as system qui-
escing, we have added an I/O agent (DMA engine) which
actually performs the necessary coherence transactions and
data transfers between the coherence network/cache model
and the disk. This approach avoids the aforementioned
inaccuracies and additionally contributes realistic conten-
tion on the address and data networks due to disk I/O.
Without building this model, we cannot know whether
neglecting these I/O effects maintains our stated goals of
both simulator accuracy and precision.
We found that for the benchmarks in Figure 2, the I/O
effects are small. The only benchmark showing a non-triv-
ial change in cache hit rate is a version of mcf in which we
have artificially constrained the physical memory size to
64MB to force paging (the L1-I, L1-D, and L2 cache hit
rates are reduced by 1.5%.) If we increase the available
physical memory to eliminate paging, because AIX imple-
ments the dcbz optimization mentioned previously (Sec-
tion 4.1) for newly allocated pages, all I/O coherence
events in mcf are eliminated. We believe the relative insen-
sitivity to I/O effects occurs due to the effectiveness of
disk caches (the benchmarks shown have a paltry number
of I/O coherence events compared with other coherence
events) and also the nature of the benchmarks--which are
not meant to stress I/O performance. We also point out that
we expect the execution time difference for single-pro-
grammed workloads, provided I/O latency is modelled, to
be small given the large disparity between I/O and coher-
ence latency.
One might expect the multi-programmed commercial
workloads (specjbb and specweb) to have required disk
activity due to database logging or increased working-set
sizes common to commercial applications. However,
specjbb has no database component and specweb has less
than 1% of coherence transactions due to I/O in our snap-
shots, leading to negligible I/O effects.
In order to stress the I/O subsystem, we created our own

FIGURE 4. Effect of wrong-path instructions on IPC.

0

0 . 5

1

1 . 5

2

2 . 5

3

cra
fty ga

p
gc

c
gz

ip mcf

pa
rse

r

pe
rlb

mk
vo

rte
x

sp
ec

jbb

sp
ec

web

b e n c h m a r k

IP
C e x e - d r i v e n

t r a c e - d r i v e n

1. Provided DMA read requests are handled as regular read requests.

multi-programmed workload with a combination of file I/
O (reading multiple uncached files using the unix ‘cat’
command) and computation (using gzip of a simulator
source code file) and measured the execution time to com-
plete the workload end-to-end. We measured up to a 2.5%
reduction in cache hit rate, and a 1.1% increase in execu-
tion time when I/O traffic was modelled. We also deter-
mined the effect of quiescing the system for I/O related
events was less than 0.9% on overall execution time.
Even for this I/O intensive workload (4.8% of coherence
traffic due to I/O), the overall effect of I/O on simulation
accuracy and precision is small, but measurable, largely
due to low contention in the coherence network (over 97%
of all coherence transactions occur with fewer than two
transactions already outstanding, with 16 possible in our
network). However, in larger-scale systems with more pro-
cessors, we expect greater contention in the coherence and
data networks due to three things: 1) Additional demand
traffic from other processors; 2) Increased I/O require-
ments for supplying them; and 3) Difficulty in scaling
coherent interconnect in large systems. Evaluating this
space is beyond the scope of this work.

4.3 Effect of Wrong-Path Execution
In this section we quantify the impact of ignoring wrong-
path instructions on a simulator’s results. To perform this
comparison, we execute each benchmark on two versions
of PHARMSim: the standard execution-driven version,
and a modified “trace-based” version which uses a perfect
branch predictor to throttle the PHARMSim fetch stage
when the machine would ordinarily be fetching an incor-
rect branch path. Using these two configurations we can
evaluate the impact of wrong-path instructions on final
performance results.
Figure 3 shows the percentage of instructions reaching the
execution stage of the pipeline that are on a mispredicted
branch path. For this machine configuration, between 25%

and 40% of all instructions executed are on the wrong
path. Because this percentage is so high, one would intu-
itively expect the side-effects of wrong path instructions to
have a significant effect on total execution time. However,
as can be seen in Figure 4 this is not the case.
Figure 4 shows the difference in IPC as measured by the
trace-driven version of PHARMSim and the execution-
driven version of PHARMSim for each of the benchmarks.
We see that the difference in IPC reported by the two sim-
ulators is only 0.97% on average. In the worst case, the
benchmark crafty, the difference is only 2.4%. The mar-
ginal differences in IPC are the caused by the interaction of
wrong-path instructions with non-speculative instructions
through the cache hierarchy and branch-predictor.
Wrong-path memory operations may have a positive or
negative effect on overall performance. If a wrong path
memory operation touches a cache block that the correct
execution path will touch in the future, the wrong path
instruction may have a prefetching effect, reducing the
number of memory related stall cycles for the program.
However, if a wrong-path instruction touches a cache
block that will not be used in the immediate future, the
speculative memory reference may pollute the cache or
may compete with subsequent correct-path memory opera-
tions for memory system bandwidth. The PHARMSim
TLB does not service a TLB miss until the instruction
which caused the miss is non-speculative, which in effect
filters some of the wrong-path memory references from the
cache hierarchy. Figure 5 shows the effects of wrong-path
instructions on memory system stall time. For all of the
benchmarks except SPECjbb and SPECweb, the inclusion
of wrong-path instructions has a positive effect on memory
stall time. In all cases, however, the effect is very small.
On average, there is only a 0.3% difference between the
total number of memory stall cycles when executing with
and without wrong-path instructions.
The execution of wrong-path instructions may also affect

FIGURE 5. Effect of wrong-path instructions on memory stall time.

0 %
5 %

1 0 %
1 5 %
2 0 %
2 5 %
3 0 %
3 5 %
4 0 %
4 5 %
5 0 %

cra
fty ga

p
gc

c
gz

ip mcf

pa
rse

r

pe
rlb

mk
vo

rte
x

sp
ec

jbb

sp
ec

web

b e n c h m a r k

%
tim

e
st

al
le

d
fo

r m
em

or
y

e x e - d r i ve n
t ra c e - d r i ve n

branch predictor performance. The branch predictor used
for the results in this section is a combining predictor
whose pattern history tables are not updated speculatively,
and whose branch history register is checkpointed before
each branch and restored in the event of a branch mispre-
diction. Consequently, the main branch predictor is not
polluted by wrong-path instructions and suffers no perfor-
mance degradation. However, the 64-entry return address
stack is updated speculatively and is not recovered in the
event of a branch misprediction. As shown in Figure 6 the
pollution of the return address stack by wrong path instruc-
tions significantly affects its performance. On average, the
accuracy of the return address stack decreases by 15%. In
the worst case (crafty) accuracy is reduced by 29%.
Despite this RAS performance loss, overall performance
results are not barely affected, as shown in Figure 4.
Overall, ignoring the effects of wrong-path execution has
almost no impact on performance. Consequently, we
believe trace-driven simulation without wrong-path
instructions is a valid method for estimating uniprocessor
performance. Execution-driven uniprocessor simulators
may also ignore wrong path instructions to improve simu-
lation efficiency. Although these results validate the use of
trace-driven simulation to evaluate single-threaded work-
loads, the performance of multi-threaded workloads which
include communication among threads should not be eval-
uated using trace-driven simulators for reasons which are
beyond the scope of this paper.

5.0 Conclusions
This paper studies three factors that can affect the accuracy
of uniprocessor simulation: operating system effects,
direct memory access by I/O devices, and wrong-path
speculative execution. Using PHARMsim, a detailed full-
system simulator that does not cheat, we are able to show
that operating system references should be fully modeled,
even for benchmarks like SPECINT2000 that have histori-

cally been considered safe for user-mode-only simulation.
In the case of the AIX operating system, this is due to opti-
mizations in the page fault handler that employ explicit
cache control instructions to avoid unnecessary cache
misses. Further, we find that correct modeling of DMA
traffic can have a nontrivial effect on performance, and
should be accounted for in workloads that perform a sig-
nificant amount of I/O. Finally, we show that wrong-path
speculative execution has a nearly indiscernible effect on
overall performance. Though individual microarchitectural
structures like the return address stack can be negatively
affected by these paths, the overall contribution of these
effects is so minimal that ignoring speculative paths is safe
for the workloads we study.
Our study is far from complete, as there are numerous
other effects we are currently studying and plan to report
on in the future. These include the effects of speculative
and non-speculative TLB refills, more detailed analysis of
branch predictor updates, evaluation of DMA transfers
directly into the cache hierarchy, etc. However, we do
make the following conclusions and suggestions based on
the evidence presented herein:
• All detailed processor simulations, even if only running

SPECINT-like benchmarks, should fully account for
operating system references. The extreme errors that
are introduced if these effects are not modeled make
any such simulations so inaccurate as to be meaning-
less. This conclusion should have a significant impact
on the research community and the peer review pro-
cess.

• Trace-based simulation, which is still widely used in
industry, should not be dismissed in favor of execution-
driven simulation. Our evidence suggests that traces
that include operating system references but omit
wrong-path speculative references are far more useful
than execution-driven simulation of user-mode pro-
grams.

FIGURE 6. Effect of wrong-path instructions on return-address stack accuracy.

0 %
1 0 %
2 0 %
3 0 %
4 0 %
5 0 %
6 0 %
7 0 %
8 0 %
9 0 %

1 0 0 %

cra
fty ga

p
gc

c
gz

ip mcf

pa
rse

r

pe
rlb

mk
vo

rte
x

sp
ec

jbb

sp
ec

web

b e n c h m a r k

R
A

S
Pr

ed
ic

tio
n

A
cc

ur
ac

y
e x e - d r i ve n
t r a c e -d r i ve n

• Though demonstrably more accurate than execution-
driven simulation, trace-based simulations may still
have shortcomings that make execution-driven simula-
tion attractive. For example, most hardware tracing
schemes are incapable of capturing register or memory
values. Hence, study of techniques that exploit value
locality is not possible with such traces.

• Workloads that perform a nontrivial amount of I/O
should be simulated in a way that properly accounts for
the additional memory traffic induced by DMA trans-
fers. Without such an accounting, simulation results
may not be acceptably accurate. On the other hand,
workloads like SPECINT2000, with minimal I/O, can
safely be simulated without accurate modeling of DMA
effects.

Finally, we want to point out that lack of proper simulation
infrastructure should not serve as a valid excuse for avoid-
ing both precise and accurate processor simulation, and the
research community as a whole needs to accept this fact.
Our research group has made a significant investment in
simulation infrastructure that also builds heavily on work
done by others. The fact that we have been able to develop
this infrastructure serves as an existence proof that it is
possible, even with the limited means available within aca-
demia.

6.0 Acknowledgments
Many individuals have contributed to the work described
in this paper. Among them are current and former mem-
bers of the PHARM research group at the University of
Wisconsin, Ravi Rajwar who wrote the SimpleMP simula-
tor, Pat Bohrer and others at IBM Research who ported
SimOS to the PowerPC architecture, as well as the original
authors of the SimOS toolset at Stanford. We are heavily
indebted to all of these individuals. This work was also
supported by donations from IBM and Intel and NSF
grants CCR-0073440, CCR-0083126, and EIA-0103670.

References
[1] Bryan Black, Andrew S Huang, Mikko H. Lipasti, and

John P. Shen. Can trace-driven simulators accurately predict
superscalar performance? In Proceedings of the 1996 IEEE
International Conference on Computer Design: VLSI in Com-
puters and Processors (ICCD ’96), October 1996.

[2] Bryan Black and John Paul Shen. Calibration of microproces-
sor performance models. Computer, 31(5):59–65, May 1998.

[3] D.C. Burger and T.M. Austin. The simplescalar tool set, ver-
sion 2.0. Technical report, University of Wisconsin Computre
Sciences, 1997.

[4] Allan Charlesworth, A. Phelps, R. Williams, and G. Gilbert.
Gigaplane-XB: Extending the ultra enterprise family. In Pro-
ceedings of the International Symposium on High Perfor-
mance Interconnects V, August 1997.

[5] R. Desikan, D. Burger, S.W. Keckler, L. Cruz, F. Latorre,
A. Gonzalez, and M. Valero. Errata on measuring experimen-
tal error in microprocessor simulation. Computer Architecture
News, March 2002.

[6] Rajagopalan Desikan, Doug Burger, and Stephen W. Keckler.

Measuring experimental error in microprocessor simulation.
In Proceedings of the 28th Annual International Symposium
on Computer Architecture (ISCA-01), June 2001.

[7] Tom Keller, Ann Marie Maynard, Rick Simpson, and Pat Bo-
hrer. Simos-ppc full system simulator. http://www.cs.utex-
as.edu/users/cart/simOS.

[8] Ann Marie Grizzaffi Maynard, Colette M. Donnelly, and
Bret R. Olszewski. Contrasting characteristics and cache per-
formance of technical and multi-user commercial workloads.
ACM SIG-PLAN Notices, 29(11):145–156, November 1994.

[9] Ravi Rajwar and Jim Goodman. Simplemp multiprocessor
simulator. Personal communication., 2000.

[10] Mendel Rosenblum. Simos full system simulator. http://si-
mos.stanford.edu.

[11] Richard L. Sites. Alpha Architecture Reference Manual. Dig-
ital Press, Maynard, MA, 1992.

[12] Amitabh Srivastava and Alan Eustace. ATOM: A system for
building customized program analysis tools. In Proceedings
of the ACM SIGPLAN ’94 Conference on Programming Lan-
guage Design and Implementation, pages 196–205, 1994.

[13] Systems Performance Evaluation Cooperative. SPEC bench-
marks. http://www.spec.org.

[14] Joel M. Tendler, S. Dodson, S. Fields, and B. Sinharoy. IBM
eserver POWER4 system microarchitecture. IBM Whitepa-
per, October 2001.

1

New Challenges in Benchmarking Future
Processors

Shubhendu S. Mukherjee
Intel Corporation

Shubu.Mukherjee@intel.com

ABSTRACT

The advent of system on a chip, fault-tolerant features,
and multiple power modes in the mainline processor
market has significant impact on how we would
benchmark future processors. Unfortunately, only a
subset of these modes may provide the highest
performance for these chips. If vendors report
performance numbers only for these highest
performing modes, then customers are faced with the
challenge of selecting the specific processor and the
specific configuration for his or her operating
environment without the benefit of any comparable
benchmark numbers.

In this paper I examine three different categories of
hardware modes that a processor chip could be
configured in. These are the use of a snoopy or
directory protocol, the presence or absence of fault
tolerance, and presence of different power modes.
Based on these examples, I classify the modes into
performance-centric and environment-centric modes
and propose that vendors report performance numbers
for these different modes. This would allow customers
to compare processor chips from different vendors
under different operating conditions.

1. INTRODUCTION

Four technology trends—exponential proliferation of
on-chip transistors, the constant RC delay of long on-
chip wires, transient faults due to cosmic ray strikes,
and power constraints—may necessitate changes to the
way we would benchmark future processors. The
exponential proliferation in the number of on-chip
transistors—fueled by Moore’s Law—is forcing
designers to find innovative ways to use these
transistors to remain competitive in the high-
performance processor market.

Unfortunately, the speed of long on-chip wires is
remaining constant due to the constant RC delay,
unlike transistors that speed up by roughly 30% with
every new technology generation. This trend, coupled
with the complexity of dealing with such an enormous

number of transistors, is forcing designers to refrain
from building a big, complicated, and monolithic
uniprocessor on a single chip. Rather, the trend is
towards Chip Multiprocessors (CMPs) with many
processors on the same chip (e.g., IBM Power4 [1], HP
Mako [2]), and/or processors with large caches that can
use up the available number of on-chip transistors.

Thus, greater amounts of system functionality, such as
multiple processors and large caches, are getting
integrated on the same chip. Additional system
components, such as memory controllers,
multiprocessor network routers, and cache-coherent
directory controllers, have also started migrating to the
same die as the processor chip (e.g., Alpha 21364 [3]).
Clearly, we are seeing the emergence of system on a
chip in the mainline processor market.

Unfortunately, while most such on-chip functions
improve performance for specific application domains,
two other trends have begun limiting the performance
of these processors. First, soft errors due to cosmic
ray strikes promise to increase dramatically in the next
few generations. This is arising because of the
proliferation of number of on-chip transistors and the
reduction in voltage levels of the chips. Consequently,
designers will be forced to use some of the on-chip
transistors for ECC, parity, or other forms of error
detection and/or correction. Other mechanisms, such
as lockstepping two complete processors (e.g., as in
Compaq Himalaya [4] or IBM G5 [5]) or the use of
redundant multithreading (e.g., AR-SMT [7], DIVA
[6], SRT [8], or CRT [9]) to detect faults, may also
become popular with CMP designs. Additionally,
support for transparent fault recovery in hardware,
such as tri-modular redundancy [10], may necessitate
even more sophisticated hardware support, which may
further limit a chip’s performance.

Second, processors are facing severe limits on average
and peak power dissipation [11]. A greater number of
on-chip transistors demands greater power
consumption (and consequent heat dissipation), if we
follow the same design methods as in the past. So,
designers must carefully use the on-chip resources to

2

reduce wasted work. Additionally, designers may have
to slow down processors, either statically or
dynamically, if they consume too much power or
completely shut some of them off to balance the total
power dissipation in a CMP chip.

The above trends have significant implications on the
way we would benchmark future processors and
systems. Currently, two of the most popular
benchmark suites are the SPEC CPU suite and the TPC
suite. The SPEC CPU 2000 suite
(http://www.spec.org) measures a processor’s integer,
floating point, and memory system performance using
a set of 25 benchmarks. SPEC allows us to
characterize uniprocessor performance using two speed
metrics—SPEC base and SPEC peak performance.
Base performance measures the performance of a
processor with a set of fixed and uniform compiler
flags applied to all benchmarks in the suite. In
contrast, peak performance measures the performance
of a processor with benchmark-specific compilation
flags. Similarly, SPEC allows us to characterize
multiprocessor or multithreaded performance using
SPEC rate, which measures the rate at which one or
more processors may complete multiple copies of the
same benchmark. SPEC rate can be similarly
categorized into base and peak rates.

TPC (http://www.tpc.org) consists of a suite of
benchmarks to measure the performance of a system
running transaction processing and database
workloads. Performance measurements can be
reported as absolute performance or in terms of
price/performance. For example, performance
measurements for the TPC-C benchmarks are reported
as both tpm (transactions per minute) and price/tpm.

Unfortunately, neither the SPEC nor the TPC suite was
designed to measure a system-on-a-chip’s
performance. The key problem is that these systems
on a chip could potentially have optional hardware
modes that will be configured in different ways. For
example, to deliver high performance on TPC-C like
benchmarks, a vendor may statically configure the
system on a chip to use a snoopy cache coherence
protocol that provides fast cache-to-cache transfers
between processors. In contrast, the same vendor may
configure the chip to use a directory-based coherence
protocol if they incorporate these chips in a large,
scalable, multiprocessor system (Section 2). Similarly,
the inclusion of fault detection and/or recovery can
dramatically reduce the performance of a system on a
chip when the fault detection mode is turned on
(Section 3). Finally, systems that will be configured
for lower power dissipation may switch to a specific

static mode—for example, by turning off several
processors in a CMP—or reduce the frequency of the
entire chip itself (Section 4).

Neither the SPEC nor the TPC suite requires vendors
to benchmark their processors or systems in all such
possible configurations. Thus, a vendor may report its
performance numbers in its highest performing
modes—with benchmark suite-specific system
configuration, no fault detection, and highest power
dissipation.

Unfortunately, such reporting can both be confusing
and unrealistic. It can be confusing because, for
example, a customer may have no clue how to compare
systems-on-a-chip for processors with fault detection
and recovery enabled. The customer may desire to
buy a highly reliable computing system, but the only
numbers he/she may find for comparison are numbers
for these systems in the non-fault detection mode.

It can be unrealistic because, for example, vendors can
potentially produce results in an environment (e.g., in a
basement or in a building with thick concrete) that
could have reduced effect of cosmic rays. Such
measurements are of little value to a customer who
wants to use systems in operating environments (e.g.,
in an office with large glass windows or in a airplane)
where the effect of cosmic rays may be quite high.

Based on the above discussions, I examine potential
solutions in Section 5. We can divide these solutions
into two broad categories based on the nature of the
hardware modes. These two modes are performance-
centric modes and environment-centric modes.
Performance-centric modes are those that configure the
system in specific hardware modes for specific
benchmarks and benchmark suites. One possible
solution for such modes is to use the SPEC
characterization of base and peak. The base mode
could be one mode specified by the system on a chip
for all configurations. However, the peak mode can be
expanded to include benchmark-specific hardware
modes, beyond the benchmark-specific compiler flags
that are already in use.

Environment-centric modes are those that specify and
evaluate benchmarks based on the specific
environment the system-on-a-chip is embedded in
during measurements. Both fault detection and power
modes fall under this category. At the minimum,
systems must specify in what environment the
measurements were done. It would be even better if
systems could specify the cosmic ray flux and the
maximum power dissipation possible in that
environment (although gathering such data can be quite

3

expensive [12]) as well as multiple numbers for
different points in the environment spectrum, such as
high and low cosmic ray flux and high and low power
dissipation modes.

2. SNOOPY VS. DIRECTORY PROTOCOLS

Most shared-memory multiprocessors use a coherence
protocol to keep per-processor caches coherent.
Typically, a cache block in a processor’s cache in a
cache-coherent multiprocessor system has at least three
basic states—invalid, shared, and exclusive. Usually, a
cache block becomes shared when a processor retrieves
the cache block in read-only state (possibly resulting
from a cache miss from a load instruction). Similarly,
a cache block becomes exclusive when a processor
retrieves a cache block in writeable state (possibly
resulting from a cache miss from a store instruction).

The two most common coherence protocols are snoopy
and directory protocols, which differ in how these
states are manipulated. A snoopy protocol usually
relies on a broadcast mechanism, such as a shared bus,
to facilitate the state transitions. To request a shared
block a processor sends snoop requests to all
processors and memories that can have that block.
Either a processor’s cache or a memory returns the
block to the processor in the shared state. A similar
sequence of events occurs when a processor requests
an exclusive block. Unfortunately, snoopy protocols
do not scale well to large systems. This is either
because the shared broadcast medium may not scale or
because expensive broadcast messages must be sent on
most processor cache misses.

Directory protocols allow cache-coherent shared-
memory multiprocessors to scale to a large number of
processors by avoiding a broadcast medium and
broadcast messages. Instead, to request a shared block,
a processor sends its request to a pre-selected “home”
node. Typically, the home node would return the data.
However, different variations in this strategy are
possible. To request an exclusive block, a processor
sends its request to the home node. The home node
tracks down one or more sharers of the block,
invalidates the cache blocks in all these sharers, and
then sends the response back to the requester.
Alternatively, the home node can also request one of
the sharers to forward the block to the original
requestor.

Although directory protocols allow systems to scale
well, they are not optimized for producer-consumer or
migratory sharing patterns in which a processor writes
data that may be needed by another processor in the
near future. For snoopy protocols, a processor can

obtain the data in two hops: one for the request
message and the second one for the response message.
However, for directory protocols, this can take three
hops: the first one for request to the home node, the
second for the directory to forward the request to the
processor with exclusive access to the block, and
finally the third one for the response to propagate back
to the requestor.

Thus, a directory protocol penalizes sharing patterns
that require cache-to-cache transfers, particularly for
small-scale systems that can benefit from a snoopy
protocol. This can have a significant impact on the
performance of benchmarks, such as TPC-C, that are
dominated by such cache-to-cache transfers. For
example, researchers have estimated that such cache-
to-cache transfers could account for more than 50% of
L2 cache misses in TPC-C like benchmarks [13][14].
Worse, the impact of such cache-to-cache transfers
rises as cache sizes increase. This is because a bigger
cache reduces other kinds of misses, such as conflict
and capacity misses, but does not significantly reduce
sharing misses that cause cache-to-cache transfers.
Thus, small-scale commercial systems, such as the
IBM Northstar [16], rely on snoopy protocols to
provide aggressive performance on TPC-C like
benchmarks. Recently, Martin, et al. [15] have shown
that it is possible to build a protocol that adapts
between a snoopy and directory protocol. Such
adaptive protocols may work for large systems. It is
not clear whether such adaptive protocols are a winner
in price/performance for small-scale systems.

This dichotomy between snoopy and directory
protocols in the performance and scalability spectra
makes it challenging for vendors to build processor
chips with full or partial support for the protocol on the
chip. Typically, vendors would like to optimize
systems that sell the most. And, systems that sell the
most are small-scale systems that can be built with
snoopy protocols. However, vendors also like to
support large systems because they typically provide
higher profit margins and assure a customer of a
scalable system. Consequently, vendors are likely to
end up supporting both a snoopy and a directory
protocol on the same chip. In the past, such a
dichotomy was not a problem because the protocol
controllers would be off-chip; vendors would
manufacture different chip sets for systems of different
sizes.

With the advent of this new generation of processors, a
customer must potentially deal with different hardware
modes for small-scale and large- scale systems and
ensure that the system he or she is buying reflects the

4

benchmark numbers for the appropriate mode he or she
is interested in. Unfortunately, today vendors do not
have to publish numbers for these different modes for
the same processor.

3. FAULT DETECTION AND RECOVERY

Support for fault tolerance—that is, fault detection and
recovery mechanisms—in the mainline processor
market may also force vendors to create different
hardware modes. This is because today’s
microprocessors are vulnerable to transient hardware
faults caused by alpha particle and cosmic ray strikes.

Strikes by cosmic ray particles, such as neutrons, are
particularly critical because of the absence of any
practical way to protect microprocessor chips from
such strikes. As individual transistors shrink in size
with succeeding technology generations, they become
less vulnerable to cosmic ray strikes. However,
decreasing voltage levels and exponentially increasing
transistor counts cause overall susceptibility of a chip
to increase rapidly. Further, the impact of cosmic ray
strikes grow by orders of magnitude in an airplane or
on higher elevations.

To compound the problem, achieving a particular
failure rate for a large multiprocessor server requires
an even lower failure rate for the individual
microprocessors that comprise it. Due to these trends,
fault detection and recovery techniques, currently used
only for mission-critical systems, would very likely
become common in all but the least expensive
microprocessor devices.

Unfortunately, current known techniques for fault
detection and fault recovery degrade a chip’s
performance quite dramatically. Traditionally,
processors have used error detection and/or correction
codes (e.g., parity, ECC, CRC) to meet failure
specifications. However, such error detection and
correction codes do not cover logic blocks effectively.
Additionally, error codes may degrade a pipeline’s
performance by adding extra pipeline stages.

Consequently, vendors may have to resort to other
techniques for fault detection and recovery. There are
three other known techniques for fault detection:
lockstepping, instruction recycling, and redundant
multithreading. In lockstepping, two complete and
identical processors run in lockstep—performing the
same computation in every cycle. Inputs to both
processors are replicated in each cycle. Similarly, in
each cycle outputs from both processors are compared
for mismatch. On a mismatch, the hardware typically
initiates a hardware or software recovery sequence.

The advent of Chip Multiprocessors with two or more
processors on the same chip would enable such
lockstep checking on the chip itself. Because
lockstepping uses two completely separate processor
cores, it can catch both permanent faults (e.g., from
electron migration) and transient faults (e.g, from
cosmic ray strikes).

Instruction recycling is another technique for fault
detection. Instead of comparing instructions from
different processors, instruction recycling runs the
same instruction twice through the same processor and
checks the corresponding outputs from these
instructions for mismatch. Since instruction recycling
runs copies of the same instruction through the same
processor, it could potentially catch all single transient
faults, but not all permanent faults.

Finally, there is a new class of fault detection
techniques that can be classified under Redundant
Multithreading (RMT). RMT runs two identical copies
of the same program as independent threads either on a
multithreaded processor or on different processors and
compares their outputs for mismatch. Several
researchers (e.g., [7],[6],[8],[9]) have proposed
variations of this technique.

Thus, all current fault detection techniques use some
form of redundancy that could have been used
otherwise to boost the performance of the chip itself.
If duplicate processor cores are used fault detection,
then we sacrifice an entire processor’s performance. If
multithreaded processors are used, then we sacrifice
about 20 – 40% of the processor’s performance (e.g.,
[7],[8],[9]).

Fault recovery techniques can further reduce the
performance of these processor chips. Fortunately,
not every processor or environment would require fault
recovery. Instead, on a detected fault, the processor
could be halted and, then restarted. In such cases, fault
recovery pays very little penalty in performance.
(assuming fault recovery is not triggered too often).
However, more aggressive and highly available
systems may want to support aggressive fault recovery
techniques, such as tri-modular redundancy (TMR) or
pair-and-spare techniques. In TMR, outputs of three
processors are compared for mismatch using a voting
scheme. When a fault occurs in one of the
processors, the other two processors’ outputs would
match and the program can continue executing. Of
course, the processor that had a fault has to be restarted
with the correct state, which may require
synchronization with the other processors. In contrast,
pair-and-spare uses two pairs of processors. Each pair

5

of processor has its own fault detection mechanism.
When a fault is detected in one of the pairs, the other
pair takes over as the main execution engine for the
program. Thus, both TMR and pair-and-spare have
very little recovery time. Other techniques, such as
software-based recovery mechanisms, can incur
significantly higher overhead in performance.

Clearly, the advent of CMPs with several processors
on-chip can allow both fault detection and recovery
techniques to be implemented on-chip. Fortunately,
not all applications and environments will require
aggressive fault detection and recovery mechanisms.
Unfortunately, however, this could lead vendors to
create several modes: with or without fault detection
and with or without fault recovery. Once again,
customers must be aware of what they are buying
compared to which environment the processor has been
benchmarked in.

4. POWER CONSTRAINT

Like cosmic ray strikes, increased power dissipation
from microprocessor chips has also begun to plague
the microprocessor industry. As the number of on-chip
transistors and clock frequency increase, dynamic
power dissipation from transistor switching begins to
reach exorbitant levels. Borkar [11] predicts that
dynamic power itself will increase from about 100W in
1999 to 2,000W in 2010. Worse, as supply voltage
scales down, static power dissipation from leakage
current starts becoming a major source of power
dissipation as well.

Power dissipation has two implications—that of peak
power dissipation and average power dissipation. The
higher the peak power dissipation, the higher is the
cost for packaging the chip. Additionally, higher peak
power requirement may also dictate how many
processor chips can be bundled in a certain cubic feet.
The chips not only have to be cooled efficiently, but
there must also be adequate power supplies to run these
machines. Thus, densely-packed rack-mounted
systems with several processors must closely monitor
and reduce the power supply to and dissipation from
these chips. Average power dissipation, on the other
hand, has greater impact on the power supply,
particularly if these machines are running on batteries.

Thus, to configure processor chips in certain packaging
material and certain environments (e.g., densely-
packed “blade” systems), vendors may create multiple
modes with different power supply and dissipation
characteristics for each mode. Designers have several
tricks to reduce the peak power dissipation. For
example, certain portions of the instruction queue,

caches, and register ports could potentially be shut
down in lower power modes. Also, vendors could
reduce the frequency or reduce wasted work by
choking the amount of speculation in processors with
aggressive pipelines. In a CMP system, entire
processors may be shut down to facilitate inclusion in
lower power systems. Both architecture and circuit
conferences abound in techniques to reduce the power
supply to and dissipation from such chips.

Usually, however, the processor chips provide the
highest performance in the highest power dissipation
modes. Consequently, if vendors report the highest
performance numbers from these chips, a customer
may not be able to compare numbers for the same
chips in lower power modes.

5. CONCLUSIONS

The above discussions suggest the advent of processor
with several different hardware modes. Processor
chips could support several orthogonal modes:

• Processors with snoopy protocol and processors
with directory protocols,

• Processors with no fault detection, processors with
fault detection but no transparent recovery, and
processors with both fault detection and
transparent hardware recovery, and

• Processors with high power mode and processors
with low power mode.

The above combination itself would create 12 different
hardware configurations. Unfortunately, only two of
these configurations are the highest performing modes
depending on the specific benchmark.

The above hardware modes can be classified into two
categories: performance-centric and environment-
centric modes. Performance-centric modes are those
that provide best performance for specific sets of
benchmarks. Thus, the choice between a snoopy and
directory protocol falls under the performance-centric
mode. The SPEC suite of benchmarks already allows
vendors to provide two different software modes: base
and peak. The base mode must use uniform compiler
flags for all benchmarks, whereas the peak mode can
use benchmark-specific flags. One solution to address
the performance-centric hardware mode would be to
allow vendors to include hardware flags in the peak
mode. Then, customers can get some sense of the
performance of the benchmarks they are interested in.

The environment-centric mode includes support for
fault tolerance and support for different power modes.
Customers would like to know the performance of

6

these processor chips in the fault tolerant modes and/or
in low power modes. Then, customers must assess the
environment they would operate these machines in and
decide which processor chips to buy.

Currently, processor vendors are not required to report
such numbers. Worse, a processor that has the highest
performance in the absence of fault tolerance and in the
high power mode may not be the highest performance
processor when these features are turned on. Both
vendors and customers must come together to decide
what would be an appropriate benchmarking standard
for this new generation of “system-on-a-chip”
processors.

ACKNOWLEDGMENTS

I would like to thank Joel Emer and Geoff Lowney for
their helpful comments on this paper.

REFERENCES

[1] IBM, “Power4 System Microarchitecture,” http://www-
1.ibm.com/servers/eserver/pseries/hardware/whitepapers/power4.html.

[2] David J.C.Johnson, “HP’s Mako Processor,” Fort Collins
Microprocessor Lab, October 16, 2001. Available from
http://cpus.hp.com/technical_references/mpf_2001.pdf.

[3] Shubhendu S. Mukherjee, Peter Bannon, Steven Lang, Aaron Spink,
and David Webb, “The 21364 Network Architecture,” Hot
Interconnects IX, 2001.

[4] Alan Wood, “Data Integrity Concepts, Features, and Technology,”
White paper, Tandem Division, Compaq Computer Corporation.

[5] T.J.Slegel, et al., “IBM’s S/390 G5 Microprocessor Design,” IEEE
Micro, pp 12–23, March/April, 1999.

[6] Todd M. Austin, “DIVA: A Reliable Substrate for Deep Submicron
Microarchitecture Design,” Proceedings of the 32nd Annual
International Symposium on Microarchitecture, November 1999.

[7] Eric Rotenberg, “AR-SMT: A Microarchitectural Approach to Fault
Tolerance in Microprocessor,” Proceedings of Fault-Tolerant
Computing Systems (FTCS), 1999.

[8] Steven K. Reinhardt and Shubhendu S. Mukherjee, “Transient Fault
Detection via Simultaneous Multithreading,” International Symposium
on Computer Architecture (ISCA), June-July, 2000.

[9] Shubhendu S. Mukherjee, Michael Kontz, and Steven K. Reinhardt,
“Detailed Design and Evaluation of Redundant Multithreading
Alternatives,” submitted for publication.

[10] Daniel P. Siewiorek and Robert S. Swarz, “Reliable Computer
Systems: Design and Evaluation,” A.K. Peters Ltd, October 1998.

[11] Shekhar Borkar, “Design Challenges of Technology Scaling,” IEEE
Micro, pp 23 – 29, July/August, 1999.

[12] Norbert Seifert, Compaq Computer Corporation, Personal
Communication.

[13] Luiz Andre Barroso, Kourosh Gharachorloo, and Edouard Bugnion,
“Memory System Characterization of Commercial Workloads,”
Proceedings of the 25th Annual International Symposium on Computer
Architecture (ISCA), pages 3 – 14, Barcelona, Spain, June/July 1998.

[14] Parthasarathy Ranganathan, Kourosh Gharachorloo, Sarita V. Adve,
and Luiz Andre Barroso, “Performance of Database Workloads on
Shared-Memory Systems with Out-ofOrder Processors,” Proceedings

of the Eighth International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), pages
307 – 318, San Jose, October 1998.

[15] Milo K. Martin, Daniel J. Sorin, Mark D. Hill, and David A. Wood,
“Bandwidth Adaptive Snooping,” Proceedings of the 8th Annual
International Symposium on High-Performance Computer
Architecture (HPCA), Feb 2002.

[16] J. Borkenhagen and S. Storino, “4th Generation 64-bit PowerPC-
Compatible Commercial Processor Design,” IBM Server Group
Whitepaper, Jan 1999.

Session 2

Methodologies

Evaluating Non-deterministic Multi-threaded
Commercial Workloads

Alaa R. Alameldeen, Pacia J. Harper, Milo M. K. Martin,
Carl J. Mauer, Daniel J. Sorin, Min Xu, Mark D. Hill and

David A. Wood
University of Wisconsin – Madison

How Input Data Sets Change Program Behaviour

Lieven Eeckhout, Hans Vandierendonck
and Koen De Bosschere

Department of Electronics and Information Systems (ELIS)
Ghent University – Belgium

Benchmarking Web Server Architectures: A Simulation
Study on Micro Performance

Haiyong Xie, Laxmi Bhuyan and Yeim -Kuan Chang
Department of Computer Science & Engineering

University of California - Riverside

rst
en

p-
the
e
re
ds

in-
-
in
r-
s)
ry
rs.
an
d.
ss

d
ay
e

lt-
is
ol-
ard
ue.

to
t,
g
eth-
of
g

a-
r

-
e
u-
s

Evaluating Non-deterministic Multi-threaded Commercial Workloads

Alaa R. Alameldeen, Carl J. Mauer, Min Xu, Pacia J. Harper, Milo M.K. Martin, Daniel J. Sorin,
Mark D. Hill and David A. Wood

Computer Sciences Department
University of Wisconsin — Madison
http://www.cs.wisc.edu/multifacet/

Abstract
Full-system simulation is increasingly used to evaluate
the performance of commercial workloads on future
multiprocessor designs. However, challenges such as
simulation slowdown, sizing constraints, and workload
tuning impede the development of commercial work-
loads for timing simulators. We describe how we
address these challenges in our development of four
commercial workload benchmarks.

This paper introduces non-deterministic workload
behavior as another potential challenge in timing simu-
lation. Non-determinism refers to the sensitivity of the
system’s timing to small changes in its parameters. This
problem is nearly universally ignored because most sim-
ulators (including ours) are deterministic: they produce
the same timing result every time, for given a workload
and system parameters. However, we find that small
changes in the memory latency can cause large changes
in run-time (nearly 10%). We propose a methodology
that uses pseudo-random perturbations and standard
statistical techniques to compensate for these non-deter-
ministic effects. Finally, we provide evidence that com-
mercial workloads have different characteristics over
time, further supporting a sampled simulation method-
ology.

1 Introduction
Commercial workload performance is an important met-
ric for shared-memory multiprocessor computer sys-
tems. Full-system timing simulation is increasingly used
to evaluate the performance of these workloads on
future multiprocessor designs [11, 17]. However using
commercial workloads in simulation environments
requires addressing issues such as their long run times,
large memory and disk requirements, and the complex-
ity involved in tuning them.

Our workload development methodology (similar to
prior work [5]) entails reducing simulation times, vali-
dating speed-ups, and scaling down the applications (as
necessary). To reduce simulation time, we use simula-
tion checkpointsto store a snapshot of the memory and
disks after a long warm-up period. We use atransaction-
based methodology that increases the accuracy of
shorter simulation runs by reducing the start and end

transient effects. To construct these workloads, we fi
tune them on an existing hardware platform, and th
we load theexact disk imagesinto our full-system simu-
lation environment. These generic workload develo
ment concerns are addressed in Section 2, and
specifics of each workload is described in Section 3. W
describe the target system and simulation infrastructu
in Section 4, and present the properties of our workloa
in Section 5.

The results in Sections 6 and 7 show that non-determ
ism exists in tuned multi-threaded commercial work
loads, and that neglecting this behavior can result
incorrect conclusions. This problem is almost unive
sally ignored because most simulators (including our
are deterministic: they produce the same result eve
time, given the same workload and system paramete
Unfortunately, small changes in system parameters c
expose the inherent non-determinism of the workloa
For example, consider reducing the L2 cache mi
latency of abasesystem by one cycle to produce an
enhancedsystem. Intuitively, this enhancement shoul
improve performance. However, this small change m
result in completely different execution paths (e.g., du
to lock races or external event timing), possibly resu
ing in worse performance. We demonstrate that th
problem does indeed occur, then describe a method
ogy that uses pseudo-random perturbations and stand
statistical measurement techniques to address this iss

2 Workload Development
This section addresses the methodology we used
develop our commercial workload benchmarks. Firs
we describe how we shorten simulation time usin
checkpoints and a transaction-based measurement m
odology. Second, we describe the two-step process
setting up and validating applications on an existin
machine, then porting the applications into our simul
tion environment. Third, we describe our method fo
scaling down the workloads for tractable simulation.

2.1 Reducing Simulation Run Times
Running end-to-end simulations of commercial work
loads would result in prohibitive run-times, due to th
slowdown present in system-level multiprocessor sim
lation. For example, the TPC-C specification require

ssor

ca-
re

o-
48-
d
or-
tec-
red
cu-
ss
the
red
d
the
y
ws
1,
ool
h
se
e
fi-

e
-

y
ge
nd

ys-
h
st
er
C-
ss
that the benchmark runs for at least two hours on a real
multiprocessor system [21]. Using a uniprocessor to
simulate TPC-C on a 16-processor system would take
more than 133 days, assuming a 1600x slowdown (100x
per-processor). To limit simulation time, we use our
simulator’s checkpoint facility to capture the architec-
tural state of the simulated system at the end of a warm-
up period (which can take days to complete). All timing
runs then start from the exact same checkpoint.

The commercial workloads presented in this paper are
throughput-oriented. To measure throughput in a real
system, one counts the number of transactions com-
pleted in a fixed time interval. For example, the TPC-C
benchmark specification measures performance by the
number of transactions completed per minute (tpmC)
[21]. To measure throughput in our simulation environ-
ment, we instrument these workloads to signal the simu-
lator at the end of each transaction using a special
instruction. We then measure the amount of time it takes
to complete a fixed number of transactions.

However, cold-start transients occur when transactions
are executed before the system has reached a steady-
state condition (e.g., the database buffer pool does not
contain a frequently accessed index page). End tran-
sients occur when most processors become idle while
they wait for the last several transactions to complete.
To minimize these effects we warm-up the system, then
take a checkpoint. Starting from this point, we measure
the (simulated) time to complete a specified number of
transactions. For example, benchmarking N transactions
means time is measured and all processors continue exe-
cution until the Nth transaction completes. Even as this
transaction completes, other transactions are in flight.
By simulating a sufficiently large number of transac-
tions, we reduce the effect of these partially complete
transactions on the throughput. As we define transac-
tions on a per benchmark basis, the work necessary to
complete one varies between benchmarks. Two transac-
tions in the same benchmark may represent significantly
different amount of work (e.g., the “New Order” and the
“Order Status” transactions in the OTLP benchmark).

2.2 Setup and Validation of Workloads

We set up and tuned our applications on a real multipro-
cessor machine, with the goal of developing workloads
with reasonable multiprocessor speedup, and measuring
microarchitectural statistics to be used in comparison
with our simulation results. Using real machines makes
setup much faster than under simulation, and permits
rapid performance testing with different parameters.
Due to the complexity of commercial workloads, they
require a considerable amount of tuning in order to have

reasonable speed-ups and scale-ups on multiproce
systems and to avoid load imbalance.

We used a number of techniques to evaluate the appli
tions’ speed-ups and scale-ups, including hardwa
counters and operating system utilities. During this pr
cess, we used a Sun E6000 machine with sixteen 2
MHz UltraSparcII processors, each with a 1 MB unifie
L2 cache. UltraSparc processors have hardware perf
mance counters that can be used to measure archi
tural events on a per-processor basis. We measu
workload characteristics using these counters and cal
lated the Instruction Per Cycle (IPC) and cache mi
rates as observed on the real machine. We tuned
workloads by seeking maximum speed-ups, measu
by wall-clock run times for benchmark runs on a limite
number of processors. For this purpose, we used
Solarispsrsettool to restrict given processes to run onl
on a subset of the available processors. Figure 1 sho
the speedup of our set of workloads when running on
2, 4, 8, and 16 processors. We also used the Solaris t
mpstat to measure the fraction of time spent by eac
processor in user, kernel, idle, or I/O wait mode. The
utilization statistics allowed us to detect load-imbalanc
problems and verify that all processors are being suf
ciently utilized (with less than 10% idle or I/O wait
time). After this validation step was complete, w
imported the exact disk images into our full-system sim
ulation environment.

2.3 Scaling Down Workloads

Full-size commercial workloads can have memor
requirements of many gigabytes, and secondary stora
requirements of several terabytes. These memory a
disk requirements often stress execution on native s
tems, and it is not currently possible to simulate suc
large systems. Moreover, simulators usually run on ho
workstations that are much less powerful than serv
systems. For example, our studies are conducted on P
based Linux systems that have a 32-bit virtual addre
space limit.

0

5

10

15

N
or

m
al

iz
ed

 S
pe

ed
up 1 Proc

2 Proc

4 Proc

8 Proc

16 Proc

OLTP SPEC-JBB Apache Slashcode Barnes-Hut

Figure 1. Workload parallel speedups

16
u-

ted
the
te

up
a-
00
ed
tisfy
-

gly
s a
sis

C
n
le.
n
ch
1

ss
in
c-
or

’s
as

os-
re-
e
nd
.

in
rk,

r-
to
se
on
it
nd
he

E)
tic
For these reasons, it is necessary to scale down the
workloads so that they can be run in our simulation
environment. We scaled down the workloads using trial
and error to find the largest configuration of a workload
that would run adequately in our simulator. Then we
tested the performance of the scaled-down workloads on
real hardware, to verify that the scaling has a minimal
effect on workload behavior. For example, our OLTP
benchmark (based on TPC-C) uses a 10-warehouse 1-
GB database on five raw disks with a single log disk.
Real TPC-C benchmark setups are normally two orders
of magnitude larger in terms of the database size and
number of disks used. Our setup on the Sun E6000
machine suffered a throughput penalty (in terms of
tpmC numbers) of less than 30% compared to a 100-
warehouse, 100 GB database constructed on 35 raw
disks and 10 log disks. However, our simulation envi-
ronment currently limits us to studying scaled-down
versions of workloads.

3 Workloads
This section summarizes the set of workloads evaluated
in this paper. This set includes two database on-line
transaction processing applications, two web-server
applications, and a scientific benchmark for comparison
purposes.

3.1 OLTP

The TPC-C [22] benchmark models the database activ-
ity of a wholesale supplier, with many concurrent users
performing business transactions against the database.
The supplier operates out of a number of warehouses
and their associated sales districts. The benchmark can
be scaled by increasing the number of warehouses, but
the database maintains fixed ratios of 10 sales districts
per warehouse and 3000 customers per district. Transac-
tions performed are of five transaction types, all related
to the order-entry environment. Performance is mea-
sured by the number of “New Order” transactions per-
formed per minute (tpmC), subject to certain
constraints.

Our OLTP workload is based on the TPC-C v3.0 bench-
mark, but we scale down the data set. We use IBM’s
DB2 V7.2 EEE database management system and an
IBM benchmark kit to build the database and model
users. We build a 1 GB 10-warehouse database on five
raw disks, and we use one additional dedicated disk for
the database log. The TPC-C consistency requirements
on the sizes of tables were maintained. We set the TPC-
C client think time to be zero. We set the disk I/O
latency in the simulator to be low and fixed (10 micro-
seconds), emulating the high performance I/O sub-
system in high-end servers.

We simulate 8 users per processor (e.g., 128 users on
processors), similar to Stets et al. [19]. Users are sim
lated using drivers from the IBM benchmark kit. A dif-
ferent process is started for each user. Each simula
user randomly executes transactions according to
TPC-C transaction mix specifications using a priva
random number generator. The database was warmed
by running for 10,000 transactions before taking me
surements. Our results were based on runs of 1,0
transactions, unless otherwise specified. All complet
transactions are measured, even those that do not sa
some timing constraints in the original TPC-C bench
mark specification.

3.2 SPECjbb

Java-based middleware applications are increasin
used in modern e-business infrastructure. SPECjbb i
Java program emulating a 3-tier system with empha
on the middle tier. It fully implements the middle tier
business logic. SPECjbb is inspired by the TPC-
benchmark and loosely follows the TPC-C specificatio
for its schema, input generation, and transaction profi
SPECjbb runs in a single Java Virtual Machine (JVM) i
which threads represent terminals in a warehouse. Ea
thread independently generates random input (tier
emulation) before calling transaction-specific busine
logic. The business logic operates on the data held
binary trees of java objects (tier 3 emulation). The spe
ification states that the benchmark does no disk I/O
network I/O.

We used Sun’s HotSpot 1.4.0 Server JVM and Solaris
native thread implementation. The system heap size w
set to 1.8GB to avoid as much garbage collection as p
sible. Our experiments used 24 threads and 24 wa
houses, with a data size of approximately 500 MB. Th
system was warmed up for 100,000 transactions, a
our results are based on runs of 100,000 transactions

3.3 Apache

Apache is a popular open-source web server used
many internet/intranet environments. In this benchma
we focus on static web content serving.

We compiled Apache 1.3.19 on Solaris with GCC ve
sion 2.95.3. We made two compile-time changes
improve performance. First, we set Apache to u
POSIX mutexes to serialize server processes waiting
accept() . Second, we set the dynamic module lim
to zero, reducing the memory usage. We compiled a
configured the Apache server according to the Apac
group’s performance notes [14].

We use the Scalable URL Request Generator (SURG
[4] as the client. SURGE generates a sequence of sta

et

00
nte-

rent
e

itch
s,

rk
i-
ry
at
ec-
e
n a
o-
and
n
nd
ive
es-

a
re

4-
ce

-
et
hi-
s
g
n-
-
ly
-
-
at
or
es
e
r-
r-

e

URL requests which exhibit representative distributions
for document popularity, document sizes, request sizes,
temporal and spatial locality, and embedded document
count. We ran 10 SURGE client threads per processor,
and set the client think time to be zero.

Our experiments used a repository of 2000 files, with
total size of approximately 50 MB, generated by
SURGE using its default parameters. The system was
warmed up for 80,000 transactions, and our results were
based on runs of 2,500 transactions.

3.4 Slashcode

Dynamic web content serving has become increasingly
important for web sites that serve large amount of infor-
mation. Serving dynamic content is essential for online
stores, instant news, and community message board sys-
tems. Our Slashcode benchmark is developed to repre-
sent these workloads.

Slashcode is an open-source dynamic web message
posting system used by the popular slashdot.org mes-
sage board system of the Linux user community. We
used Slashcode 2.0, Apache 1.3.20, and Apache’s
mod_perl module 1.25 on the server side. MySQL
3.23.39 is used as the database engine. The server con-
tent is a snapshot from the slashcode.com site, and it
contains approximately 3000 messages, with a total size
of 5 MB. This benchmark is not database-oriented, so
the size of the content has a small impact on system
behavior. Most of the run time is spent on dynamic web
page generation.

Autoslash is a multi-threaded user emulation program
we developed to simulate user browsing and posting
behavior. Each user independently and randomly gener-
ates browsing and posting requests to the server accord-
ing to a transaction mix specification. There are 3
simulated users per processor. The system was warmed
up for 240 transactions before taking measurements.
Our results are based on runs of 50 transactions. Both
server and client are compiled with Sun’s WorkShop C
6.1 with aggressive optimization.

3.5 Barnes-Hut

For comparison, we selected one application from the
SPLASH-2 [23] benchmark suite: Barnes-Hut with 64K
bodies. The benchmark was compiled with Sun’s Work-
Shop C 6.1 with profile-based feedback and uses the
PARMACS shared-memory macros used by Artiaga et
al. [3]. The macro library was modified to enable user-
level synchronization through test-and-set locks rather
than POSIX-thread library calls. We began measure-
ment at the start of the parallel phase to avoid measuring
initialization and thread forking.

4 Target System & Simulation Infrastructure
This section presents our simulation model of a targ
system and details of our simulation infrastructure.

4.1 Target System Model

We model a 16-node system similar to the Sun E100
[7]. Each node contains a processor, caches, and an i
grated memory controller for a portion of the 2 GB
shared main memory. System caches are kept cohe
using an MOSI invalidation-based snooping cach
coherence protocol. We assume a single crossbar sw
for the interconnection network to connect the node
with a delay of 50 ns for each interconnection netwo
traversal (which includes wire propagation, synchron
zation, and routing). We selected 80 ns for memo
DRAM access time. When a protocol request arrives
a processor or at memory, it takes 25 ns or 80 ns, resp
tively, to provide data to the interconnect. Thes
assumed latencies result in a 180 ns latency to obtai
block from memory and a 125 ns latency for a cache-t
cache transfer. We assume an integrated processor
first level cache model that would complete four billio
instructions per second if the memory system beyo
the L1 caches was perfect. This establishes the relat
speed of the memory system with respect to the proc
sors, and is representative of a 2 GHz processor with
perfect L2-cache that has an IPC of 2. L2 caches a
modeled as being 4 MB 4-way set associative with 6
byte blocks. We assume a 1 GHz system clock, hen
the system cycle time is 1 ns.

4.2 Full-System Simulation

We use Simics [1], a full-system multiprocessor simula
tor, to simulate the same commercial workloads we s
up on the real hardware. Simics is a system-level arc
tectural simulator developed by Virtutech AB that i
capable of booting unmodified commercial operatin
systems and running unmodified applications. We co
figured Simics to model an E6000-like SPARC V9 tar
get system running unmodified Solaris 8. Simics is on
a functional simulator by default, but it supports exten
sions to model timing. We use Simics’ functional pro
cessor model to model a simple blocking processor th
executes all instructions in one simulated process
cycle. We assume a processor clock that is four tim
the frequency of the system clock (i.e., 4 GHz). W
extended this simple timing model with a memory hie
archy simulator that accurately models memory refe
ence timing.

4.3 Memory System Simulator

Our memory system simulator,Ruby, processes requests
from Simics and blocks memory operations on cach

ol-

la-

a
e,
e
d
r is

so
li-
, a
s-

-
g

o-
e

g
n-
at-
e
ns
y
n
s-
c-
a
a

all
dul-
i-

c-
n,
uc-
o-
ns
dif-
misses. A blocked Simics processor will complete no
instructions until Ruby explicitly un-blocks the proces-
sor when the miss processing completes. This allows
Ruby to capture timing-dependent race conditions and
lock contention that cannot be captured using a trace-
driven methodology. Ruby supports a broad range of
coherence protocols, which are specified using our
table-driven specification methodology [18]. The speci-
fication is codified using our domain specific language
SLICC (Specification Language for Implementing
Cache Coherence) and software tools to generate the
C++ source code for the protocol state machines used in
Ruby. Using this methodology, our simulations capture
timing races and state transitions (including transient
states) of the coherence protocols in cache and memory
controllers.

5 Workload Properties
Table 1 presents some properties of our workloads from
simulations of a 16-processor system. This table corrob-
orates previous results by showing that our OTLP
benchmark spends approximately one-quarter of its time
in the kernel [5], and that commercial applications have
significantly worse cache performance characteristics
compared to the Barnes-Hut scientific benchmark.

In the following sections, we present non-deterministic
effects that we observed in the OLTP benchmark. The
four commercial workloads studied in this paper exhibit
these effects to different extents. Ranked from most
variable to least variable, the commercial workloads are
slashcode, OLTP, Apache, and SPECjbb. We chose to
present OLTP’s behavior as representative of these
workloads.

6 Commercial Workload Non-determinism
When measuring real systems, researchers normally
make multiple measurements and use standard statisti-
cal techniques to ensure statistically significant results
[2]. The goal of this methodology is to ensure that
uncontrolled experimental factors do not lead to false
conclusions. For example, if the paging daemon runs in

one execution but not in any others, using this method
ogy should isolate this non-systematic effect.

Conversely, when (most) researchers perform simu
tion studies, they (implicitly) assume thatall experimen-
tal factors are controlled and present results from
singlesimulation run. This assumption seems plausibl
since a deterministic simulator will always return th
same result for a given combination of workload an
system parameters. However, just because a simulato
deterministic does not mean that the workload is al
deterministic. While a single-threaded, user-level app
cation running on a uniprocessor may be deterministic
multi-threaded commercial workload on a multiproce
sor is not.

Workload non-determinism can be caused by small tim
ing variations that cause the application or operatin
system to take different execution paths. On a unipr
cessor, a small difference in the arrival time of a devic
interrupt may result in a radically different operatin
system scheduling decision. On a multiprocessor, sy
chronization races may cause the application or oper
ing system to acquire locks in different orders. Th
outcome of memory races and scheduling decisio
potentially leads to divergent executions, which ma
yield widely varying results for the simulated executio
time after the completion of the same number of tran
actions, or may even execute different mixes of transa
tions. Since the amount of work required to complete
transaction in a given workload can vary, executing
different mix of transactions would likely result in dif-
ferent simulated execution times.

We performed an experiment that shows that sm
changes in memory latencies can affect process sche
ing even in a deterministic uniprocessor simulation env
ronment. We ran two OLTP simulations starting from
the same checkpoint and artificially introduced instru
tion cache misses every 100 instructions. In the first ru
these additional cache misses are introduced at instr
tions 0, 100, etc., while in the second they are intr
duced at instructions 50, 150, etc. While these two ru
have the same cache miss rate, they report up to 9%

Table 1. Workload properties

Workload

Memory
blocks touched

(64 bytes)
Unique miss

PCs

L2 cache misses
per 1000

instructions

Supervisor
misses

(% of total)

Time Spent in
Kernel

(% of total)

OLTP 57 MB 12136 3.0 43% 28%

SPECjbb 353 MB 8163 3.2 15% 1%

Apache 102 MB 10214 2.9 82% 84%

Slashcode 173 MB 17009 1.1 48% 43%

Barnes-Hut 16 MB 3413 0.3 16% 3%

c-
re
ch
al

a-
e
m
t-

f a
or
ion
the
th
an
ms

en
ff
er

ld
ference in simulated execution time after 2000 transac-
tions. By instrumenting the simulator to report which
processes are scheduled, we were able to show that the
OS makes different scheduling decisions. Figure 2
shows a snapshot of the execution of these two runs.
Run1 shows the execution of a process in process group
1, alternating between executing in kernel mode (black)
or user mode (dark grey). In this same interval for Run2,
the OS swaps out process group 1 and schedules a pro-
cess of process group 2 (light grey). This snapshot
shows the interval in which the initial divergence
occurred. Both runs scheduled the same process groups
prior to this snapshot, but the scheduling decisions were
completely different beyond this point of divergence.

To mitigate the effects introduced by non-determinism,
we run multiple simulations for each particular hard-
ware configuration, and use their mean simulated execu-
tion time as our performance metric. We illustrate below
how this methodology can be used to effectively sepa-
rate systematic improvements from random effects
caused by non-determinism.

Figure 3 presents statistics of the simulated execution
time, gathered from a set of fifteen 1000-transaction
OLTP runs on two different cache configurations. For
each configuration, the left and right columns show the
minimum and maximum (simulated) runtime, respec-
tively. The center columns show the mean, with error
bars indicating the standard deviation. Each run begins
from the same checkpoint, but the simulator randomly
introduces small perturbations in the memory system.
On each L2 cache miss, the latency is randomly
increased by a uniform random number between zero
and seven nanoseconds. This perturbation effectively
increases the contention-free memory access time to
183.5 ns and 128.5 ns, for memory and cache-to-cache
misses respectively. Since the OLTP workload misses in

the L2 cache no more than four times per 1000 instru
tions, the worst-case variation in CPI should be no mo
than 4%. And since there are millions of misses in ea
run, the law of large numbers [2] suggests that the actu
variation should be much less. However, this perturb
tion results in widely varying execution times, whos
range is approximately 10% of the mean. The minimu
execution time for the direct-mapped case is lower (be
ter) than the maximum for the set-associative case. I
researcher performed only a single simulation run f
each case, s/he might draw the erroneous conclus
that the direct-mapped cache performs better than
set-associative cache. By performing multiple runs wi
random perturbations, statistically significant results c
be obtained, that is the enhanced configuration perfor
better than the base case.

7 Workload Variability
Our transaction-oriented methodology simulates a giv
workload for a fixed number of transactions. A trade-o
is made between simulation time and accuracy. Long
simulations amortize cold-start effects (e.g., co

Figure 2. OS scheduling decisions are affected by memory latency

0

100

200

300

C
yc

le
s

(i
n

M
ill

io
ns

)

Mininum
Mean
Maximum

Direct-Mapped 4-way SA

Figure 3. Execution time variations for two different
cache configurations

in
to

ir
nd
r-
be

el
r
-
er
(in
to

y
th
n-
la-
n
0-
[9]
n

are
re
caches) and smooth out variations due to heterogeneous
transactions. To quantify this effect, we evaluated our
workloads for different numbers of simulated transac-
tions. Table 2 shows some architectural characteristics,
computed from an average of twenty OLTP simulations
on a 16-processor system. We had initially hoped that
the runtime statistics would converge as we ran longer
simulation. However, as shown in Figures 4, 5, and 6,
even long simulations reveal that the workload exhibits
different characteristics over time.

Using the OLTP workload, we simulated 8,000 transac-
tions on a 16-processor system. These graphs show the
average results of twenty separate runs, starting from the
same checkpoint, measured every 200 transactions. The
error bars indicate the standard deviations for each inter-
val. Figure 4 shows there is variability during the run in
the throughput of the system (the number of cycles to
complete transactions). Figure 5 shows that the number
of cache misses necessary to complete transactions is
relatively stable across the run. Figure 6 shows there is
considerable variability in the number of instructions
executed to complete transactions in the OLTP bench-
mark.

Clearly a single short simulation run cannot capture the
wide spectrum of the commercial workloads’ behavior.
Time-sampling is a well-known technique that may

prove valuable to complete an architectural study with
a reasonable simulation time [10, 12]. We intend
explore this further in future work.

8 Related Work
Prior work has studied commercial workloads for the
architectural and micro-architectural characteristics, a
has used them for simulation studies and for perfo
mance evaluations. The characterization studies can
classified by the level of detail in the processor mod
(in-order or out-of-order), their tools (real hardware o
simulation), and the workloads studied. Our work distin
guishes itself from these related works as it uses new
benchmarks, such as SPECjbb, larger configurations
general), and studies these workloads’ sensitivities
timing changes.

Barroso et al. [5] is an influential characterization stud
of commercial workloads on multiprocessors using bo
hardware counters, and in-order simulation tools. Ra
ganathan et al. [16] uses user-level out-of-order simu
tion to show that database workloads running o
sequentially consistent systems can perform within 1
15% of release consistent systems. Keeton et al.
study the effects of out-of-order speculative executio
on multiprocessor database workloads using hardw
performance counters. Dedicated snooping hardwa

Table 2. Some OLTP properties for different simulation lengths

Number of simulated transactions 200 400 600 800 1000 1200

System cycles per transaction 4.09 4.21 4.27 4.41 4.57 4.58

System cycles per instruction 0.78 0.74 0.72 0.70 0.66 0.66

L2 misses per 1000 instructions 3.79 3.50 3.39 3.23 2.99 2.98

L2 supervisor mode misses (%) 41.8 41.4 41.1 42.0 42.4 42.3

L2 misses per transaction (thousands) 19.78 19.99 20.11 20.48 20.70 20.73

Simulation runtime (hours) 1.92 3.88 5.89 8.02 10.18 12.23

0 2000 4000 6000

Transactions

0

2000

4000

6000

8000

10000

C
yc

le
s

(i
n

T
ho

us
an

ds
)

0 2000 4000 6000

Transactions

0

5

10

15

20

M
is

se
s

(i
n

T
ho

us
an

ds
)

0 2000 4000 6000

Transactions

0

10000

20000

30000

In
st

ru
ct

io
ns

 (
in

 T
ho

us
an

ds
)

Figure 4. Cycles per transaction Figure 6. Instructions per transactionFigure 5. Misses per transaction

,

r
c

-

d

n
r

l

ce

.

n

.
d

l

r

has been used to study the memory system performance
of commercial workloads running in real hardware sys-
tems [13]. The web-based on-line transaction processing
benchmark TPC-W has also been studied in prior work
[6]. The memory system performance of Decision Sup-
port System (DSS) workloads in multiprocessors have
been characterized by Trancoso et al. [20].

In our simulation methodology we use an in-order pro-
cessor model. Pai et al. [15] demonstrate that a key char-
acteristic in shared-memory multiprocessor simulation
is how the memory system is modelled. Durbhakula et
al. [8] show this principle can be applied to approximate
an out-of-order processor model using a simple proces-
sor model trading, achieving a significant speedup and
introducing relatively little error.

9 Conclusions
This paper describes the methodology we adopt in
developing four multiprocessor commercial workloads
into benchmarks for simulation studies. In this method-
ology, we perform the setup of these workloads on real
hardware for tuning and evaluation, then import them
into our simulation environment. We provide a detailed
explanation of our workloads and our simulation envi-
ronment. We present some speed-up measurements of
the tuned commercial workloads on the real hardware,
and workload-specific tuning issues.

In order to deal with the non-determinism present in
multiprocessor simulations, we proposed a transaction-
based approach for simulation runs, that helps decrease
cold-start and end transient effects. We demonstrate that
even a fully deterministic simulation of a uniprocessor
can exhibit non-deterministic behavior due to OS sched-
uling. We present how an incorrect conclusion can be
reached if the issue of non-determinism is ignored. We
demonstrate that commercial applications can exhibit
different characteristics, and that these characteristics
could lead to a large variation in simulation results. We
propose a methodology for coping with this non-deter-
minism by introducing minor perturbations in memory
system latencies, and running multiple simulations for
the same hardware configuration. This approach can
lead to statistically significant results for these non-
deterministic workloads.

Acknowledgements
This work is supported in part by the National Science
Foundation with grants EIA-9971256, CDA-9623632,
and CCR-0105721, an IBM Graduate Fellowship (Mar-
tin), an Intel Graduate Fellowship (Sorin), two Wiscon-
sin Romnes Fellowships (Hill and Wood), and donations
from Compaq Computer Corporation, IBM, Intel, and
Sun Microsystems.

References

[1] Virtutech AB. Simics Full System Simulator.
http://www.simics.com/.

[2] Arnold O. Allen. Probability, Statistics, and
Queueing Theory. Academic Press, second
edition, 1990.

[3] Ernest Artiaga, Nacho Navarro, Xavier Martorell
and Yolanda Becerra. Implementing PARMACS
Macros for Shared Memory Multiprocesso
Environments. Technical report, Polytechni
University of Catalunya, Department of
Computer Architecture Technical Report UPC
DAC-1997-07, January 1997.

[4] Paul Barford and Mark Crovella. Generating
Representative Web Workloads for Network an
Server Performance Evaluation. InProceedings
of the 1998 ACM Sigmetrics Conference o
Measurement and Modeling of Compute
Systems, pages 151–160, June 1998.

[5] Luiz A. Barroso, Kourosh Gharachorloo, and
Edouard Bugnion. Memory System
Characterization of Commercial Workloads. In
Proceedings of the 25th Annual Internationa
Symposium on Computer Architecture, pages 3–
14, June 1998.

[6] Harold W. Cain, Ravi Rajwar, Morris Marden,
and Mikko H. Lipasti. An Architectural
Evaluation of Java TPC-W. InProceedings of the
Seventh IEEE Symposium on High-Performan
Computer Architecture, pages 229–240, January
2001.

[7] Alan Charlesworth. Starfire: Extending the SMP
Envelope. IEEE Micro, 18(1):39–49, Jan/Feb
1998.

[8] Murthy Durbhakula, Vijay S. Pai, and Sarita V
Adve. Improving the Accuracy vs. Speed
Tradeoff for Simulating Shared-Memory
Multiprocessors with ILP Processors. In
Proceedings of the Fifth IEEE Symposium o
High-Performance Computer Architecture, pages
23–32, January 1999.

[9] Kimberly Keeton, David A. Patterson,
Yong Qiang He, Roger C. Raphael, and Walter E
Baker. Performance Characterization of a Qua
Pentium Pro SMP using OLTP Workloads. In
Proceedings of the 25th Annual Internationa
Symposium on Computer Architecture, pages 15–
26, June 1998.

[10] R. E. Kessler, Mark D. Hill, and David A. Wood.
A Comparison of Trace-Sampling Techniques fo
Multi-Megabyte Caches.IEEE Transactions on
Computers, 43(6):664–675, 1994.

tt
r

s

e

h
d

n

g
y
n

il.

il.
n

n
a.
d

n
.

[11] Peter S. Magnusson et al. SimICS/sun4m: A
Virtual Workstation. In Proceedings of Usenix
Annual Technical Conference, June 1998.

[12] Margaret Martonosi, Anoop Gupta, and Thomas
Anderson. Effectiveness of Trace Sampling for
Performance Debugging Tools. InProceedings of
the 1993 ACM Sigmetrics Conference on
Measurement and Modeling of Computer
Systems, pages 248–259, May 1993.

[13] Ashwini Nanda, Kwok-Ken Mak, Krishnan
Sugavanam, Ramendra K. Sahoo,
Vijayaraghavan Soundararajan, and T. Basil
Smith. MemorIES: A Programmable, Real-Time
Hardware Emulation Tool for Multiprocessor
Server Design. InProceedings of the Ninth
International Conference on Architectural
Support for Programming Languages and
Operating Systems, November 2000.

[14] Apache Performance Notes.
http://httpd.apache.org/docs/misc/perf-tuning.html.

[15] Vijay S. Pai, Parthasarathy Ranganathan, and
Sarita V. Adve. The Impact of Instruction-Level
Parallelism on Multiprocessor Performance and
Simulation Methodology. InProceedings of the
Third IEEE Symposium on High-Performance
Computer Architecture, pages 72–83, February
1997.

[16] Parthasarathy Ranganathan, Kourosh
Gharachorloo, Sarita Adve, and Luis Barroso.
Performance of Database Workloads on Shared-
Memory Systems with Out-of-Order Processors.
In Proceedings of the Eighth International
Conference on Architectural Support for
Programming Languages and Operating
Systems, pages 307–318, October 1998.

[17] Mendel Rosenblum, Stephen A. Herrod, Emme
Witchel, and Anoop Gupta. Complete Compute
System Simulation: The SimOS Approach.IEEE
Parallel and Distributed Technology: System
and Applications, 3(4):34–43, 1995.

[18] Daniel J. Sorin, Manoj Plakal, Mark D. Hill,
Anne E. Condon, Milo M.K. Martin, and
David A. Wood. Specifying and Verifying a
Broadcast and a Multicast Snooping Cach
Coherence Protocol.IEEE Transactions on
Parallel and Distributed Systems, To appear.

[19] Robert Stets, Luiz Andre Barroso, Kouros
Gharachorloo, and Ben Verghese. A Detaile
Comparison of TPC-C versus TPC-B. InThird
Workshop on Computer Architecture Evaluatio
Using Commercial Workloads in conjunction
with HPCA-6, January 2000.

[20] Pedro Trancoso, Josep-L. Larriba Pey, Zhen
Zhang, and Josep Torrellas. The Memor
Performance of DSS Commercial Workloads i
Shared-Memory Multiprocessors. InProceedings
of the Third IEEE Symposium on High-
Performance Computer Architecture, pages 250–
260, February 1997.

[21] Transaction Processing Performance Counc
TPC-C. http://www.tpc.org/tpcc/.

[22] Transaction Processing Performance Counc
TPC Benchmark C, Draft Specification, Revisio
4.0.q, August 1999.

[23] Steven Cameron Woo, Moriyoshi Ohara, Eva
Torrie, Jaswinder Pal Singh, and Anoop Gupt
The SPLASH-2 Programs: Characterization an
Methodological Considerations. InProceedings
of the 22nd Annual International Symposium o
Computer Architecture, pages 24–37, June 1995

How Input Data SetsChangeProgram Behaviour

LievenEeckhout HansVandierendonck KoenDeBosschere
Departmentof ElectronicsandInformationSystems(ELIS), GhentUniversity, Belgium

E-mail:
�
leeckhou,hvdieren,kdb � @elis.rug.ac.be

Abstract

Having a representativeworkloadof the target domain
of a microprocessoris extremelyimportant throughoutits
design.Thecompositionof a workloadinvolvestwo issues:
(i) which benchmarksto selectand (ii) which input data
setsto selectper benchmark.Unfortunately, weare unable
to selecta hugenumberof benchmarksandrespectiveinput
setsdueto limitationson theavailablesimulationtime. In
this paper, weuseprincipal componentsanalysis(PCA) to
efficientlyexploretheworkloadspace. Within thisworkload
space, different input data setsfor a givenbenchmarkcan
be displayedand representativeinput data setscan be se-
lectedfor the givenbenchmark. Thefinal goal is to select
a limited setof representativebenchmark-inputtuplesthat
spanthecompleteworkloadspace.

1 Intr oduction

Thefirst stepwhendesigninganew microprocessoris to
composeaworkloadthatshouldberepresentativefor theset
of applicationsthatwill berun on themicroprocessoronce
it will be usedin a commercialproduct[2, 12]. A work-
loadthentypically consistsof anumberof benchmarkswith
respective input datasetstaken from variousbenchmarks
suites,suchasSPEC,TPC,MediaBench,etc. This work-
loadwill thenbeusedduringthevarioussimulationrunsto
performdesignspaceexplorations.It is obviousthatcom-
posinga representative workloadis extremelyimportantin
order to obtain a designthat is optimal for the target en-
vironmentof operation. The questionwhencomposinga
representative workload is thustwofold: (i) which bench-
marksand(ii) which input datasetsto select. In addition,
we have to take into accountthatevenhigh-level architec-
tural simulationsareextremelytime-consuming.As such,
thetotal simulationtime shouldbelimited asmuchaspos-
sibleto limit thetime-to-market. This impliesthatthetotal
numberof benchmarksandinputdatasetsshouldbelimited
without compromisingthe final design. Ideally, we would
like to have a limited setof benchmark-inputtuplesspan-

ning thecompleteworkloaddesignspace,which containsa
varietyof themostimportanttypesof programbehaviour.

Conceptually, the completeworkloaddesignspacecan
be viewed as a � -dimensionalspacewith � the num-
berof importantprogramcharacteristicsthataffect perfor-
mance,e.g.,branchpredictionaccuracy, cachemissrates,
instruction-level parallelism,etc. Obviously, � will be too
large to display the workload design spaceunderstand-
ably. In addition, correlationexists betweenthesevari-
ableswhichreducestheability to understandwhatprogram
characteristicsarefundamentalto make thediversityin the
workloadspace.In thispaper, wereducethe � -dimensional
workloadspaceto a � -dimensionalspacewith ����� (���
	
or ����� typically) makingthevisualisationof theworkload
spacepossiblewithout losing importantinformation. This
is achievedby usingprincipalcomponentsanalysis(PCA).
Wewill show thatPCAcanbeusedefficiently toexplorethe
workloaddesignspacein generalandto measuretheimpact
of inputdatasetsonprogrambehaviour in particular.

Each benchmark-inputtuple is a point in this � -
dimensionalspace(obtainedafterPCA).Wecanexpectthat
different benchmarkswill be ‘f ar away’ from eachother
while differentinput datasetsfor a singlebenchmarkwill
beclusteredtogether. Thisrepresentationgivesusanexcel-
lentopportunityto measuretheimpactof inputdatasetson
programbehaviour. Weakclustering(for variousinputsand
a singlebenchmark)indicatesthat the input sethasa large
impactonprogrambehaviour; strongclusteringontheother
hand,indicatesasmall impact.

In addition, this representationgivesus an idea which
input setsshouldbeselectedwhencomposinga workload.
Strongclusteringsuggeststhata singleor only a few input
setscould be selectedto be representative for the cluster.
This will reducethe total simulationtime significantly for
two reasons:(i) the total numberof benchmark-inputtu-
plesis reduced;and(ii) thebenchmark-inputtupleselected
to representa clustercanhave a smalldynamicinstruction
countcomparedto theotherbenchmark-inputtuplesin the
cluster. Thereductionof thetotal simulationtime is anim-
portantissuefor theevaluationusingcommercialworkloads
sincecommercialworkloadstendto have largedynamicin-

structioncountsin orderto berepresentative.
This paperis organizedasfollows. In section2, thepro-

gramcharacteristicsusedareenumerated.Principalcom-
ponentsanalysisandits usein this context arediscussedin
section3. In section4, it is shown that PCA is useful in
the context of workload characterization.In addition,we
discusshow input datasetsaffect programbehaviour. Sec-
tion 5 discussesrelatedwork. We concludein section6.

2 Workload Characterization

It is importantto selectprogramcharacteristicsthat af-
fect performancefor performing PCA in the context of
workloadcharacterization.Selectingprogramcharacteris-
tics thatdo not affectperformance,suchasthedynamicin-
structioncount,mightdiscriminatebenchmark-inputtuples
on a characteristicthatdoesnot affect performance,yield-
ing no informationaboutthe behaviour of the benchmark-
input tuple whenexecutedon a microprocessor. We have
identifiedthefollowing programcharacteristics:
 Instruction mix. We considerfive instructionclasses:

integerarithmeticoperations,logical operations,shift
and byte manipulationoperations,load/storeopera-
tionsandcontroloperations.
 Branch prediction accuracy. Weconsiderthebranch
predictionaccuracy of threebranchpredictors: a bi-
modalbranchpredictor, a gsharebranchpredictorand
a hybrid branchpredictor. The bimodal branchpre-
dictor consistsof an 8K-entry table containing2-bit
staturatingcounterswhich is indexedby the program
counter of the branch. The gsharebranch predic-
tor is an 8K-entry table with 2-bit saturatingcoun-
ters indexed by the programcounterxor-ed with the
taken/not-taken branchhistory of 12 past branches.
The hybrid branch predictor [18] combinesthe bi-
modal and the gsharepredictor by choosingamong
themdynamically. This is doneusingametapredictor
that is indexedby thebranchaddressandcontains8K
2-bit saturatingcounters.
 Data cachemiss rates. Data cachemiss rateswere
measuredfor five different cacheconfigurations:an
8KB anda 16KB direct-mappedcache,a 32KB and
a 64KB two-way set-associative cacheanda 128KB
four-way set-associative cache.The line sizewasset
to 32 bytes.
 Instruction cachemiss rates. Instructioncachemiss
ratesweremeasuredfor thesamecacheconfigurations
mentionedfor thedatacache.
 Sequentialflow breaks. We have alsomeasuredthe
numberof instructionsbetweentwo sequentialflow

breaksor, in otherwords, the numberof instructions
betweentwo takenbranches.
 Instruction-levelparallelism. To measuretheamount
of ILP in a program,we consideran infinite-resource
machine,i.e., infinite numberof functionalunits,per-
fectcaches,perfectbranchprediction,etc. In addition,
we scheduleinstructionsas soonas possibleassum-
ing unit executioninstructionlatency. The only de-
pendenciesconsideredbetweeninstructionsareread-
after-write (RAW) dependenciesthroughregistersas
well asthroughmemory. In otherwords,perfectreg-
isterandmemoryrenamingareassumedin thesemea-
surements.

For this study, thereare ����	�� programcharacteristics
on whichPCA is performed.

3 Principal ComponentsAnalysis

Principalcomponentsanalysisc(PCA) [17] is a statisti-
caldataanalysistechniquethatpresentsa differentview on
the measureddata. It builds on the assumptionthat many
variables(in our case,programcharacteristics)are corre-
lated and hence,they measurethe sameor similar prop-
erties of the program-inputtuples. PCA computesnew
variables,called principal components, which are linear
combinationsof the original variables,suchthat all prin-
cipal componentsare uncorrelated. PCA tranforms the� variables ����������������������� into � principal components� ��� � � �������!� � � with

�#" ��$ �%'& �)(" % � %
. This transforma-

tion hasthe properties(i) * (,+.- � �0/213* (,+.- � �4/215�����61* (,+.- � �7/ which meansthat
� � containsthe most informa-

tion and
� � the least; and (ii) 8�9;: - � " � � % /��<�=�?>A@CB�ED

which meansthat thereis no informationoverlapbetween
theprincipalcomponents.Notethatthetotalvariancein the
dataremainsthe samebeforeandafter the transformation,
namely $ � " & � * (,+F- � " / .

Becausethetotalamountof varianceis keptunchanged,
someof the principal componentswill have only a small
variance.Hencethey have moreor lessthesamevaluefor
all program-inputtuples. By removing thesecomponents
from the measurementdata, we can reducethe number
of workload characteristics,while controlling the amount
of information that we throw away. We retain � princi-
pal componentswhich is a significant information reduc-
tion since �G� � in most cases,typically �E�H	 or�I�J� . To measurethe fraction of information retained
in this � -dimensionalspace,we usetheamountof varianceK $IL" & � * (,+.- � " /NM'O K $ � " & � * (,+.- � " /NM accountedfor by these� principalcomponents.

During principal componentsanalysis,one can either
work with normalizedor non-normalizeddata(the datais
normalizedwhen the meanof eachvariable is zero and

its varianceis one). In the caseof non-normalizeddata,
a higher weight is given in the analysisto variableswith
a highervariance. In our experiments,we have usednor-
malizeddatabecauseof our heterogeneousdata;e.g., the
varianceof the ILP is ordersof magnitudelarger thanthe
varianceof thedatacachemissrates.

In this study the � original variablesare the program
characteristicsmentionedin section2. By examining the
most important � principal components,which are linear
combinationsin theoriginalprogramcharacteristics,mean-
ingful interpretationscanbe given to theseprincipal com-
ponentsin termsof theoriginalprogramcharacteristics.To
facilitatetheinterpretationof theprincipalcomponents,we
applythevarimaxrotation[17] in the � -dimensionalspace.
This rotationmakesthe coefficients (" % eithercloseto P 1
or zero,suchthattheoriginal variableseitherhavea strong
impacton a principal componentor they have no impact.
Notethattherotatedprincipalcomponentsarestill uncorre-
lated.

The next stepin the analysisis to display the various
benchmarksaspointsin the � -dimensionalspacebuilt upby
the � principalcomponents.As such,aview canbegivenon
theworkloaddesignspaceandtheimpactof inputdatasets
onprogrambehaviourcanbedisplayed,aswill bediscussed
in thenext section.

We usedSTATISTICA’99 edition[1], a packagefor sta-
tistical computations,to performPCA. This works asfol-
lows. A 2-dimensionalmatrix is presentedasinput to STA-
TISTICA in which thecolumnsrepresenttheoriginal vari-
ables,in our casethe ���Q	�� programcharacteristicsfrom
section2. The rows of this matrix representthe various
program-inputtuples,which will beenumeratedin thenext
section.Onthismatrix,PCAis performedby STATISTICA
whichyieldsustheprincipalcomponents.Oncetheseprin-
cipal componentsareobtained,it is up to theuserto deter-
minewhich principalcomponentsshouldberetained.This
decisionis madebasedontheamountof varianceaccounted
for by the retainedprincipal components. STATISTICA
alsocomputesthecoefficientsof thevariousprogram-input
tuplesasa function of the retainedprincipal components.
Thesedatacanbe usedto representthe program-inputtu-
ples in a � -dimensionalspacebuilt up by these� retained
principal components.The resultsof this analysiswill be
presentedin theevaluationsectionof this paper.

4 Evaluation

4.1 Experimental Setup

In this study, we have used the SPECint95bench-
marks. The reasonwhy we chooseSPECint95instead
of SPECint2000is to limit the simulation time sincewe
wantedto work with referenceinputsasmuchaspossible.

In additionto SPECint95,we usedpostgres v6.3 running
the decisionsupportTPC-D queriesover a 100MB Btree-
indexeddatabase.For postgres, we ranall TPC-Dqueries
except for query1 becauseof memoryconstraintson our
simulationmachine. Detailson the benchmarksandtheir
inputsetsaregivenin Table1.

Thebenchmarkswerecompiledwith optimizationlevel
-O4 andlinkedstaticallywith the-non shared flag for the
Alphaarchitecture.Thecharacteristicsmeasuredin thispa-
per areall dynamiccharacteristics.This wasdoneby in-
strumentingtheseprogramswith ATOM [23], a binary in-
strumentationtool for theAlpha architecture.

4.2 Results

In thissection,wewill first performPCAonthedatafor
the variousinput setsof gcc. Subsequently, the samewill
bedonefor li andpostgres, respectively. Finally, PCAwill
beappliedon thedatafor all thebenchmark-inputtuplesof
Table1.

RTS
UNV
W
X
Y
Z
[
\

]_^ `Ta bNc d e f gh!iTj k0l'm n0o�prq?s7tvu0w�x4y�z|{�}

~�� ��� ��
� ������
���� ���?�?� ���

���=� � ��� � � ¡r¢r¡r£ ¤�¥= ¦ §©¨ ª©« ª'¬ ­�®¯r°�± °?²r³
´ µ?¶¸·?¹

º?» ¼ ½�¾ ¿ ¾ » À?À
ÁrÂ?Ã©Ä.Å Æ�Ç È?É©Ê4Ë

Ì'Í¸ÎrÏ'Ð¸ÑÒ ÓrÔrÓ�Õ�Ö ×?Ø¸Ù?Ú
ÛrÜrÝ Þ©ß?Ûràá â'ã?ä åræ

Figure 1. Gcc.

Gcc. PCA extractedtwo principal componentsfrom the
dataof gcc. Thesetwo principal componentstogetherac-
countfor 88.3%of the total variance.After varimaxrota-
tion, the first componentis positively dominated,seeTa-
ble 2, by thebranchpredictionaccuracy, thepercentageof
arithmeticandlogicaloperations;andnegativelydominated
by the I-cachemissrates. The secondcomponentis posi-
tively dominatedby the D-cachemiss rates,the percent-
ageof shift and control operations;and negatively domi-
natedby the ILP, the percentageof load/storeoperations
andthenumberof instructionsbetweentwo takenbranches.
Figure 1 presentsthe variousinput setsof gcc in the 2-
dimensionalspacebuilt up by thesetwo components.Data

benchmark input dyn (M) stat mem(K)

gcc amptjp 835 147,402 375
c-decl-s 835 147,369 375
cccp 886 145,727 371
cp-decl 1,103 143,153 579
dbxout 141 120,057 215
emit-rtl 104 127,974 108
explow 225 105,222 280
expr 768 142,308 653
gcc 141 129,852 125
genoutput 74 117,818 104
genrecog 100 124,362 133
insn-emit 126 84,777 199
insn-recog 409 105,434 357
integrate 188 133,068 199
jump 133 126,400 130
print-tree 136 118,051 201
protoize 298 137,636 159
recog 227 123,958 161
regclass 91 125,328 117
reload1 778 146,076 542
stmt-protoize 654 148,026 261
stmt 356 138,910 250
toplev 168 125,810 218
varasm 166 139,847 168

postgres Q2F 227 57,297 345
Q3F 948 56,676 358
Q4F 564 53,183 285
Q5F 7,015 60,519 654
Q6F 1,470 46,271 1,080
Q7a 9.6 34,103 189
Q8a 11.8 34,125 192
Q9a 9.5 32,843 189
Q10F 1,794 62,564 681
Q11a 6.6 34,126 186
Q12a 6.3 34,294 185
Q13a 5.9 32,725 184
Q14a 5.9 35,404 184
Q15F 5.5 35,138 183
Q16F 82,228 58,067 389
Q17F 183 54,835 366

benchmark input dyn (M) stat mem(K)

li boyer 226 9,067 36
browse 672 9,607 39
ctak 583 8,106 18
dderiv 777 9,200 16
deriv 719 8,826 15
destru2 2,541 9,182 16
destrum2 2,555 9,182 16
div2 2,514 8,546 19
puzzle0 2 8,728 19
tak2 6,892 8,079 16
takr 1,125 8,070 36
triang 3 9,008 15

ijpeg vigo.ppm 817 16,037 1,273
specmun.ppm 730 15,952 1,136
penguin.ppm 790 16,128 1,227

go 509 2stone9.in 593 55,894 45
50219stone21.in 35,758 62,435 57
50215stone21.in 35,329 62,841 57

compress 5000000e2231 21,495 4,494 1,715
1000000e2231 4,342 4,490 433
500000e 2231 2,182 4,496 272
100000e 2231 423 4,361 142

m88ksim train.in 24,959 11,306 4,834
perl jumble 2,945 21,343 5,951
vortex train 3,244 78,766 1,266

Table 1. Characteristics of the benc hmarks used with their inputs, dynamic instruction count (in
million), static instruction count (number of instructions executed at least once) and data memor y
footprint in 64-bit words (in thousands).

pointsin thisgraphwith ahighvaluealongthefirst compo-
nent,have high branchpredictionaccuraciesandhigh per-
centagesof arithmeticand logical operationscomparedto
theotherdatapoints;in addition,thesedatapointsalsohave
low I-cachemissrates.Notethatthesedataarenormalized.
Thus,only relative distancesare important. For example,
emit-rtl and insn-emit are relatively closer to eachother
thanemit-rtl andcp-decl.

Figure1 shows thatgcc executinginput setexplow ex-
hibits a differentbehaviour thanthe otherinput sets. This
is dueto its high D-cachemissrates,its high percentageof
shift andcontroloperations,andits low ILP, its low percent-
ageof load/storeoperationsandits low numberof instruc-
tions betweentwo taken branches.The input setsemit-rtl
andinsn-emit have a high I-cachemissrate,a low branch

predictionaccuracy anda low percentageof arithmeticand
logical operations;for reload1 the oppositeis true. The
strongclusterin themiddleof thegraphcontainsthe input
setsgcc, genoutput, genrecog, jump, regclass, stmt and
stmt-protoize. Notethatalthoughthecharacteristicsmen-
tionedin Table1 (i.e.,dynamicandstaticinstructioncount,
anddatamemoryfootprint)aresignificantlydifferent,these
inputsetsresultin quitesimilarprogrambehaviour.

Li. PCA extracted two principal componentsfrom the
dataof thelisp interpreter. Thesetwo principalcomponents
togetheraccountfor 75.6%of thetotalvariance.After vari-
max rotation,the first componentis positively dominated,
seeTable2, by the percentageof memoryoperations,the

ç èé êìë í
î�ïð ñ�ò ó ô
õ�ö ÷ ø
ùìú ûü
ýrþ ÿ�

� ��� ��� �
	���
 ��� � � ��� � � ��� �
��� � �� !� �#"%$& ('*)+�!'*��,%�#-/.

012 3
45 6
78 9
:;
<=>?
@AB

C D
E F
G H
I�J

K
L
M
N

O PRQ�S#T UWV�X�Y Z�[\] ^�_ ` a b�c d
e�f g h�i#g e#j%k&i&l*mne#l*h�o%h!p/q

rst u
vw x
yz {
|}
~���
���

� �
� �
� �
���

�
�
�
�

� � � � � � � �
��� � �#�#� �#�%�(�& *¡+�! *��¢%�#£�¤

¥¦§ ¨
©ª «
¬­ ®
¯°
±²³´
µ¶·

¸º¹�»

¼¾½
¿ÁÀ
ÂÄÃ

Å¾Æ ÇÉÈ�Ê

ËÉÌ�ÍÎ¾Ï

Ð¾Ñ
Ò¾ÓÕÔ×Ö

ØÉÙ*Ù�Ú!Ù�Û

ÜÁÝ

ÞÉß�à

áÁâã¾ä

å¾æ

çÉè�é

ê¾ë
ì¾íïî×ð

ñ¾ò

óÉô�õ

öÉ÷�ø

ù¾ú
û¾ü

ý¾þ

ÿ�������
���	�
��

��
�
���
��

�����������

Figure 3. Postgres.

���

���

� �

!

"

#

$

%�& '�()+* , - .
/10�2 35476 859;:=<?>A@CBEDAF5G;H7IKJ

LMN O
PQ R
ST U
VW
XY
Z[
\]
^

_ `ba�cedgf h=ikj�l

m�ngo�pbq

r?s�t�tgu v?w x y z {b|�}

~?�b� � �
��� �b�

�?�g��� � �g���
�g�?��� � ���

� ���+�
�b� ���

 ? ?¡�¢ £ ¤

Figure 2. Lisp interpreter .

numberof instructionsbetweentwo takenbranchesandthe
missratefor the8KB I-cache;andnegatively dominatedby
thepercentageof logical andshift operations,andthemiss
ratesfor D-cacheslarger than32KB. The secondcompo-
nentis positively dominatedby theamountof ILP andthe
miss rate for the D-cachessmallerthan 16KB; and nega-
tively dominatedby thepercentageof arithmeticoperations
andthemissratefor I-cacheslargerthan32KB.

Figure 2 presentsthe variousinput setsof li in the 2-
dimensionalspacebuilt upby its two principalcomponents.
Five input setsresult in a behaviour that is different from
theotherinput setslocatedat theright of thegraph.Three
of these,namely takr, browse and boyer, have a higher
missratefor largerD-caches,ahigherpercentageof logical
andshift operations,a lower percentageof load/storeoper-
ations,a lower numberof instructionsbetweentwo taken
branchesanda lowermissratefor the8KB I-cache.Two of
theseinput sets,namelypuzzle0 andtriang, have a higher
I-cachemiss rate,a smallermiss rate for small D-caches,
a higher percentageof arithmeticoperationsand a lower

amountof ILP.

TPC-D. PCA extractedthreeprincipal componentsfrom
thedataof postgres runningtheTPC-Dqueries,account-
ing for 90.2%of thetotal variance.After varimaxrotation,
thefirst componentis positively dominated,seeTable2, by
theamountof ILP, thepercentageof arithmeticoperations
andtheD-cachemissrate;andnegatively dominatedby the
branchpredictionaccuracy of the gsharebranchpredictor
andthepercentageof logical operations.Thesecondcom-
ponentis postively dominatedby theI-cachemissrateand
negatively dominatedby the percentageof shift and byte
manipulationoperations.Thethird componentis positively
dominatedby thenumberof instructionsbetweentwo taken
branchesandnegativelydominatedby thebranchprediction
accuracy andthepercentageof controloperations.

Figure3 shows thedatapointsof postgres runningthe
TPC-Dqueriesin the3-dimensionalspacebuilt by thethree
(rotated)components.In thisgraph,thereis astrongcluster
thatcontainsqueries11,12,13,14and15. Fromthisgraph,
wecanalsoconcludethatqueries5, 16and17exhibit asig-
nificantly differentbehaviour thantheotherqueries.Query
17 hassignificantlyhigherI-cachemissratesanda signif-
icantly lower percentageof shift operations.Queries5 and
16 differ from eachotherdueto a high andlow numberof
instructionsbetweentwo takenbranches,respectively; and
a low versushigh branchpredictionaccuracy andpercent-
ageof controloperations,respectively.

Workload Space. Performing PCA on all benchmark-
input tuplesasdescribedin Table 1, yields four principal
componentsaccountingfor 89.2%of thetotalvariance.Af-
tervarimaxrotation,thefirst componentis positively domi-
nated,seeTable2, by the branchpredictionaccuracy and
the percentageof logical operations. The secondprinci-
pal componentis positively dominatedby theI-cachemiss
rates.The third componentis positively dominatedby the
D-cachemiss rates. The fourth componentis positively

¥ ¦

§ ¨

©«ª

¬

­

®

¯

° ± ² ³ ´ µ ¶«· ¸ ¹ º »
¼�½ ¾ ¿+À+¾ ¼+Á�ÂÃÀÃÄ�ÅÆ¼+Ä�¿ Ç�¿�È?É

ÊËÌ ÍÎ
Ï ÐÑ
Ò Ó
ÔÕ
Ö×Ø
ÙÚÛ
Ü

Ý Þ

ß à

á«â

ã

ä

å

æ

ç è é«ê ë ì í î ïð ñ ò ó+ô+ò ð+õ�öÃôÃ÷�øÆð+÷�ó ù�ó�ú�û

üýþ ÿ�
� ���
����
	
��

����

� ������� ����� ������ !#" $
%�&('
)+*
,+- .0/1+2

35476
8:9�9<;>=�? 8@ A B�C�D

EGFH�I�J K
LNM�O�P Q�R

S�T(T

U(V�W�XZY [Z\(\
] ^

_ ` aNb�c
d�egf h�i7j e�k�l�monZpgq r�s7t p�uNv�wyx

z�{g| }�~(� {������y� �N����� �7���<� ����� � �<�������<���������� �����<�

���� �¡ ¢�£¤ ¥<¦(§
¨�© ª�«0¬®­

¯�°N±®²�³
´Zµ�¶7· ¸ ¹�º:»¼ ½

¾ ¿ À Á�Â�Ã

Ä:Å�Å�Æ7Ç�È Ä
É�Ê�Ë Ì Í�Î

Ï�Ð7Ñ
Ò+Ó Ô�Õ�Ö ×ØZÙ(Ù ÚGÛ Ü

ÝNÞ�ß à á�â
ãGä å

æ:ç è

Figure 4. Workload space: fir st component vs. second component on the left and thir d vs. four th
component on the right.

dominatedby the percentageof arithmeticoperationsand
thenumberof instructionsbetweentwo takenbranches;and
negatively dominatedby the percentageof control opera-
tions.

Figure4 showsthesebenchmark-inputtuplesin thefour-
dimensionalworkloadspacebuilt up by its principal com-
ponents. The benchmarksgo, ijpeg and compress are
somewhatisolatedpointsin this 4-dimensionalspace.This
is due to the high D-cachemiss ratesfor compress, the
high percentageof arithmeticoperations,the low percent-
ageof control operationsandthe high numberof instruc-
tions betweentwo taken branchesfor ijpeg and the low
branchpredictionaccuracy andthe low percentageof logi-
caloperationsfor go.

It is also interestingto note that the datapointscorre-
spondingto thegcc benchmarkarestronglyclustered,ex-
ceptfor theinputsetsemit-rtl, insn-emit andexplow. This
suggeststhat for the clustergcc only a small numberof
input setsshouldbeselectedfor theworkloadto represent
thegcc benchmark,ultimatelyreducingthetotalsimulation
timeof gcc comparedto thesimulationof all theinputsets.

Thedatapointscorrespondingto the lisp interpreterare
stronglyclusteredaswell, exceptfor thefollowing five in-
put sets:triang, takr, destrum2, browse andboyer. The
variety within thesefive input setsis causedby the data
cachemissratemeasuredby thethird principalcomponent.

The datapointscorrespondingto postgres runningthe
TPC-Dquerieson theotherhand,areweaklyclusteredex-
cept for queries11 through 15 (not clearly seenon the
graph). This suggeststhat for the TPC-Dbenchmark,sev-
eral queriesneedto be consideredin order to be repre-
sentative. Note that all queriesresult in an above-average
branchpredictionaccuracy (high valuealongthefirst prin-
cipal component).The spreadalong the secondprincipal
componentis very largeandcoversabout80%of therange

of the secondcomponent.Therefore,a wide rangeof dif-
ferentI-cachebehaviour canbeobservedwhenrunningthe
TPC-D queries.Wheninspectingthe third principal com-
ponent,we seethat the TPC-D queriesfall apartinto two
groups:thosewith relatively highdatacachemissratesand
thosewith relatively low D-cachemissrates.

The differencein behaviour betweenthe program-input
tuplesfor go andcompress is mainlydueto thedifference
in thedatacachemissrates.For ijpeg, all threeinput sets
seemto resultin moreor lessthesamebehaviour.

In general,we canconcludethat the variationbetween
programsis largerthanthevariationbetweeninput setsfor
the sameprogram. Thus,whencomposinga workload, it
is moreimportantto selectdifferentprogramswith a well
choseninput setthanto includevariousinputsfor thesame
program. For example, the program-inputtuplesfor gcc
(exceptfor explow) andijpeg arestronglyclusteredin the
workloadspace. In somecaseshowever, for examplefor
postgres runningdifferentTPC-Dqueries,theinputsethas
a relatively high impactonprogrambehaviour.

5 Relatedwork

KleinOsowskietal.[14] proposeto reducethesimulation
time of the SPEC2000benchmarksuiteby usingreduced
inputdatasets.Insteadof usingthereferenceinputdatasets
providedby SPEC,whichresultin unreasonablylongsimu-
lation times,they proposeto usesmallerinputdatasetsthat
accuratelyreflect the behaviour of the full referenceinput
sets.For determiningwhethertwo input setsresultin more
or lessthesamebehaviour, they usedthechi-squaredstatis-
tic basedon the function-level executionprofiles for each
input set. Note thata resemblanceof function-level execu-
tion profiles doesnot necessarilyimply a resemblanceof
otherprogramcharacteristicswhich areprobablymoredi-

li gcc TPC-D all
PC1 PC2 PC1 PC2 PC1 PC2 PC3 PC1 PC2 PC3 PC4

ILP 0.11 0.74 0.43 -0.70 0.87 -0.13 0.33 -0.58 0.20 0.39 0.59
bimodal 0.38 -0.59 0.94 0.30 0.04 0.05 -0.93 0.92 0.20 -0.03 -0.18
gshare 0.44 0.09 0.94 0.22 -0.70 -0.10 -0.66 0.78 -0.35 0.01 -0.48
hybrid 0.67 -0.17 0.95 0.19 -0.45 0.07 -0.83 0.80 -0.07 -0.02 -0.56
ld/st 0.91 0.30 -0.58 -0.80 -0.59 0.14 0.66 -0.66 -0.34 -0.21 -0.58
int arithmetic -0.25 -0.96 0.94 -0.06 0.84 0.48 0.10 -0.17 0.33 0.04 0.81
logical -0.84 -0.41 0.82 0.12 -0.90 -0.39 -0.01 0.95 0.11 -0.08 0.01
shift -0.97 0.17 -0.04 0.86 -0.04 -0.72 -0.47 0.52 -0.14 0.35 0.54
control -0.23 0.64 0.24 0.89 -0.41 -0.32 -0.80 0.07 0.26 0.06 -0.89
seq.flow break 0.82 0.51 -0.14 -0.95 0.40 0.11 0.89 -0.26 -0.25 -0.12 0.87
I$ 8KB 0.80 -0.51 -0.72 -0.61 -0.04 0.96 -0.13 0.24 0.88 -0.13 -0.26
I$ 16KB 0.32 -0.87 -0.76 -0.55 -0.02 0.98 -0.13 0.28 0.94 -0.05 -0.01
I$ 32KB 0.04 -0.86 -0.88 -0.41 0.20 0.93 0.06 0.11 0.97 0.04 0.03
I$ 64KB -0.05 -0.92 -0.90 -0.24 0.21 0.86 0.14 -0.08 0.93 0.00 0.05
I$ 128KB -0.04 -0.92 -0.85 -0.14 0.52 0.70 0.25 -0.27 0.75 -0.04 0.06
D$ 8KB 0.09 0.63 0.27 0.93 0.67 0.66 0.27 -0.18 0.64 0.59 -0.08
D$ 16KB -0.46 0.75 0.43 0.88 0.83 0.37 0.28 -0.14 0.46 0.84 0.01
D$ 32KB -0.93 0.30 0.50 0.86 0.95 0.15 0.18 -0.04 -0.03 0.99 0.00
D$ 64KB -0.94 0.27 0.57 0.80 0.96 0.06 0.13 0.04 -0.17 0.97 0.01
D$ 128KB -0.97 0.17 0.63 0.73 0.96 0.00 0.10 0.12 -0.20 0.95 0.07

Table 2. The factor loadings of the principal components after varimax rotation for li, gcc, postgres
and all the benc hmark-input tuples, from left to right respectivel y. For example , this means that the
fir st principal component for li is definied as follo ws: é 8�ê6���=�ëêìê�íïîñðòéôó2� � �0õöíø÷0@®ù 9ûú (+ü ó2�=� ýìýþíëÿ�� � (+�� ó �����
Factor loadings greater than �=����� are sho wn in bold.

rectlyrelatedto performance,suchasinstructionmix, cache
behaviour, etc. The latterapproachwastakenin this paper
for exactlythatreason.KleinOsowski etal. alsorecognized
thatthis is apotentialproblem.Themethodologypresented
in this papercanbe usedaswell for selectingreducedin-
put datasets. A referenceinput set anda resemblingre-
ducedinput setwill be situatedcloseto eachother in the� -dimensionalspacebuilt up by theprincipalcomponents.

Another importantresearchtopic that is relatedto this
paperis tracesampling[5, 6, 13, 16]. In tracesampling,
severalsamplesaretakenfrom a programexecutionsothat
the total numberof instructionsin the samplesis signifi-
cantly lessthanthe total numberof instructionsof a com-
pleteexecution. In order to make viable designdecisions
basedon thesesampledtraces,a sampledtraceshouldbe
representative for the completeprogramexecution. Iyen-
gar et al. [11] proposean R-metricfor measuringthe rep-
resentativenessof a sampledtrace.LafageandSeznec[15]
proposeto chooserepresentative samplesusinga datare-
ductiontechnique,namelyclusteranalysis.Themethodol-
ogy presentedherecouldalsobe usedto validatesampled
traces.Indeed,a sampledtracethat is situatedcloseto its
referencetracein the workloadspacecould be considered

asbeingrepresentative.

Only recently, anew fastsimulationtechniquewasintro-
duced,namelystatisticalsimulation[3, 7, 8, 19, 21, 20]. In
statisticalsimulation,a statisticalprofile is extractedfrom
a programexecutionwhich is subsequentlyfed into a syn-
thetic tracegenerator. The synthetictracebeinggenerated
can then be executedon a trace-driven simulator which
yields performanceestimates.Due to the statisticalnature
of the technique,the total numberof instructionsin a syn-
thetictracecanbelimited sincetheperformancecharacter-
istics while simulatinga synthetictracequickly converge.
Typically, no morethanonemillion instructionsneedto be
simulatedto obtaina stableperformanceestimate.Statis-
tical simulation is relatedto the researchtopic presented
in this paper, since the successof both techniquesrelies
onchoosingrelevantprogramcharacteristicsto beincorpo-
ratedin theanalysis.For statisticalsimulation,relevantpro-
gramcharacteristicsareneededto obtaina high accuracy;
for the techniquepresentedin this paper, relevantprogram
characteristicsareneededto constructa reliableworkload
space.

Another possibleapplicationof using a datareduction
techniquesuchasprincipalcomponentsanalysis,is to com-

paredifferentworkloads.In [4], Chow et al. usedPCA to
comparethe branchbehaviour of Java andnon-Java work-
loads.Theinterestingaspectof usingPCAin thiscontext is
thatPCA is ableto identify on which point two workloads
differ.

HuangandShen[10] evaluatedtheimpactof input data
setson thebandwidthrequirementsof computerprograms.

Changesin programbehaviourdueto differentinputdata
setsarealsoimportantfor profile-guidedcompilation[22],
whereprofiling informationfrom a pastrun is usedby the
compiler to guide its optimisations. Fisherand Freuden-
berger [9] studiedwhetherbranchdirectionsfrom previ-
ousrunsof a program(usingdifferentinput sets)aregood
predictorsof the branchdirectionsin future runs. Their
studyconcludesthat branchesgenerallytake the samedi-
rections in different runs of a program. However, they
warn that somerunsof a programexerciseentirely differ-
entpartsof theprogram.Hence,theserunscannotbeused
to make predictionsabouteachother. By using the aver-
agebranchdirectionover a numberof runs, this problem
canbeavoided. Wall [24] studiedseveral typesof profiles
suchasbasicblock countsandthenumberof referencesto
globalvariables.Hemeasuredtheusefulnessof aprofileas
thespeedupobtainedwhenthatprofile is usedin a profile-
guidedcompileroptimisation. Seemingly, the bestresults
areobtainedwhenthe sameinput is usedfor profiling and
measuringthespeedup.This impliesthatevery input is dif-
ferentin somesenseandleadsto differentcompileroptimi-
sations.

6 Conclusion

In microprocessordesign,it is importantto havearepre-
sentative workloadto make correctdesigndecisions.This
paperproposestheuseof principalcomponentsanalysisto
efficiently explore the workload space. In this workload
space,benchmark-inputtuplescanbedisplayed.This rep-
resentationcanbeusedto measuretheimpactof input data
setson programbehaviour. An interestingapplicationfor
this techniqueis the selectionof representative input data
sets. Indeed,simulatinga singleor only a few representa-
tive input setsperbenchmarkinsteadof simulatinga large
numberof inputsetsultimatelyreducesthetotal simulation
time.

Acknowledgements

Lieven Eeckhoutand Hans Vandierendonckare sup-
portedby a grantfrom theFlemishInstitutefor thePromo-
tionof theScientific-TechnologicalResearchin theIndustry
(IWT).

References

[1] StatSoft,Inc. (1999).STATISTICA for Windows.Computer
programmanual.http://www.statsoft.com.

[2] P. BoseandT. M. Conte. Performanceanalysisandits im-
pactondesign.IEEEComputer, 31(5):41–49,May 1998.

[3] R.CarlandJ.E.Smith.Modelingsuperscalarprocessorsvia
statisticalsimulation.In WorkshoponPerformanceAnalysis
andits ImpactonDesign, June1998.

[4] K. Chow, A. Wright, andK. Lai. Characterizationof Java
workloadsby principal componentsanalysisand indirect
branches. In Proceedingsof the Workshopon Workload
Characterization(WWC-1998),heldin conjunctionwith the
31st Annual ACM/IEEE International Symposiumon Mi-
croarchitecture (MICRO-31), pages11–19,Nov. 1998.

[5] T. M. Conte,M. A. Hirsch,andK. N. Menezes.Reducing
statelossfor effective tracesamplingof superscalarproces-
sors. In Proceedingsof the1996InternationalConference
onComputerDesign(ICCD-96), Oct.1996.

[6] P. K. Dubey andR.Nair. Profile-drivensampledtracegener-
ation.TechnicalReportRC20041,IBM ResearchDivision,
T. J.WatsonResearchCenter, Apr. 1995.

[7] L. Eeckhoutand K. De Bosschere. Hybrid analytical-
statisticalmodelingfor efficiently exploringarchitectureand
workloaddesignspaces.In Proceedingsof the2001Inter-
national Conferenceon Parallel Architecturesand Compi-
lation Techniques(PACT-2001), pages25–34,Sept.2001.

[8] L. Eeckhout,K. De Bosschere,andH. Neefs. Performance
analysisthroughsynthetictracegeneration.In TheIEEEIn-
ternationalSymposiumonPerformanceAnalysisof Systems
andSoftware (ISPASS-2000), pages1–6,Apr. 2000.

[9] J. Fisher and S. Freudenberger. Predicting conditional
branchdirectionsfrom previousrunsof aprogram.In Proc.
of theFifth InternationalConferenceon Architectural Sup-
port for ProgrammingLanguages and Operating Systems
(ASPLOS-V), pages85–95,1992.

[10] A. S. Huangand J. P. Shen. The intrinsic bandwidthre-
quirementsof ordinary programs. In Proc. of the Sev-
enthInternationalConferenceon Architectural Supportfor
ProgrammingLanguagesandOperatingSystems(ASPLOS-
VII), pages105–114,Oct.1996.

[11] V. S. Iyengar, L. H. Trevillyan, andP. Bose. Representa-
tive tracesfor processormodelswith infinite cache.In Pro-
ceedingsof the SecondInternationalSymposiumon High-
PerformanceComputerArchitecture (HPCA-2), pages62–
73,Feb. 1996.

[12] L. K. John,P. Vasudevan, andJ. Sabarinathan.Workload
characterization:Motivation, goalsand methodology. In
L. K. JohnandA. M. G. Maynard,editors,WorkloadChar-
acterization: Methodology and CaseStudies. IEEE Com-
puterSociety, 1999.

[13] R.E. Kessler, M. D. Hill, andD. A. Wood.A comparisonof
trace-samplingtechniquesfor multi-megabytecaches.IEEE
Transactionson Computers, 43(6):664–675,June1994.

[14] A. J. KleinOsowski, J. Flynn, N. Meares,and D. J. Lilja.
Adapting the SPEC2000 benchmarksuite for simulation-
basedcomputerarchitectureresearch.In IEEE 3rd Annual
WorkshoponWorkloadCharacterization(WWC-2000)held

in conjunctionwith the InternationalConferenceon Com-
puterDesign(ICCD-2000), Sept.2000.

[15] T. LafageandA. Seznec.Choosingrepresentative slicesof
programexecutionfor microarchitecturesimulations:A pre-
liminary applicationto thedatastream.In IEEE3rd Annual
Workshopon WorkloadCharacterization(WWC-2000)held
in conjunctionwith the InternationalConferenceon Com-
puterDesign(ICCD-2000), Sept.2000.

[16] G.Lauterbach.Acceleratingarchitecturalsimulationby par-
allel executionof tracesamples. TechnicalReportSMLI
TR-93-22,SunMicrosystemsLaboratoriesInc.,Dec.1993.

[17] B. F. J. Manly. Multivariate StatisticalMethods:A primer.
Chapman& Hall, secondedition,1994.

[18] S. McFarling. Combining branchpredictors. Technical
ReportWRL TN-36, Digital WesternResearchLaboratory,
June1993.

[19] D. B. Noonburg and J. P. Shen. A framework for statis-
tical modeling of superscalarprocessorperformance. In
Proceedingsof thethird InternationalSymposiumon High-
PerformanceComputerArchitecture (HPCA-3), pages298–
309,Feb. 1997.

[20] S.NussbaumandJ.E. Smith.Modelingsuperscalarproces-
sorsvia statisticalsimulation.In Proceedingsof the2001In-
ternationalConferenceon Parallel ArchitecturesandCom-
pilation Techniques(PACT-2001), pages15–24,Sept.2001.

[21] M. Oskin, F. T. Chong,andM. Farrens. HLS: Combining
statisticalandsymbolicsimulationto guidemicroprocessor
design. In Proceedingsof the 27th Annual International
SymposiumonComputerArchitecture (ISCA-27), pages71–
82,June2000.

[22] M. Smith. Overcomingthechallengesto feedback-directed
optimization (keynote talk). In Proc. of ACM SIGPLAN
workshopon Dynamicand adaptivecompilationand opti-
mization, pages1–11,2000.

[23] A. SrivastavaandA. Eustace.ATOM: A systemfor building
customizedprogramanalysistools. TechnicalReport94/2,
WesternResearchLab,Compaq,Mar. 1994.

[24] D. Wall. Predictingprogrambehavior using real or esti-
matedprofiles. In Proceedingsof the 1991 International
Conferenceon ProgrammingLanguage Designand Imple-
mentation(PLDI-1991), pages59–70,1991.

Benchmarking Web Server Architectures: A Simulation Study on Micro
Performance

Haiyong Xie, Laxmi Bhuyan, and Yeim-Kuan Chang
Department of Computer Science & Engineering

University of California, Riverside
Riverside, CA 92521

yong@cs.ucr.edu

Abstract
As Internet expands, the number of application servers,
especially Web servers, has been increasing exponentially.
To improve the performance of Web servers, researchers
have paid attention to and studied the Web server’s
macro-performance, namely, the response time and
throughput, which can be perceived by end users directly.
In this paper, we have produced a micro benchmark,
ServBench, by studying the micro performance of the most
widely used Apache Web server. The bottleneck functions
are identified by profiling the Apache server running with
a realistic workload. We select some of these functions as
micro-benchmark programs and study their
characteristics. We port the microbenchmark to
SimpleScalar simulation environment. We obtain
execution time, branch prediction and cache miss results
for the microbenchmark as a function of various
architectural parameters.

1. Introduction

Recent years have seen an explosive growth of the
Internet. Web applications and Web servers are critical to
the success of the Internet. To improve the performance of
Web servers, researchers have studied the Web server’s
macro-performance, namely, the response time and
throughput, which can be perceived by end users directly.
These studies have led to many benchmarks such as
SPECweb [24], WebStone [26], NetPerf [20], and
WebBench[27]. However, most of the macro-performance
bottlenecks such as protocol stack overhead and process
management overhead actually stems from the operating
systems. Other studies show that web servers spend about
85% of the cycles in executing operating system codes
compared to only 9% by SPEC95 suite [25]. Hu et al [14]
found that Apache spends only 20-25% of the total CPU
time on user code. This means Apache spends most of the
CPU time in the kernel of operating system.

A number of performance evaluation studies on web
servers have been reported in the literature. Most of these
studies characterize external performance of web servers,
namely, how the web server interacts with the outside
world, which is called macro-performance in this paper.
The workloads either consist of mainly static web page
accesses or many static web page access blended with a
small percentage of CGI scripts that perform very simple
computation functions. A number of performance
evaluation methodologies have been suggested in the
literature [11,13,16,17].

The studies on improving Web server’s macro-
performance focus on improvement of either the
interactivity between the Web servers, the underlying
operating systems, or disk I/O and network I/O. The
studies in this field generally fall into three categories:
operating system enhancement [2,6,7,8], server program
improvement [1,5], and caching techniques [12,15].

A very limited number of studies focus on
architectural performance of Web servers, which we call
micro performance in this paper. Radhakrishnan and John
[23] evaluated the performance of Apache Web server in
terms of micro-architecture using hardware performance
monitoring counters. They studied such architectural
performance as CPI and cache miss rates for both static
and dynamic workloads. Iyer studied the cache
performance of single and dual-processor servers running
SPECWeb99 benchmark by feeding traces through
simulation models of CacheFlowII [16]. The micro
performance is very important for us to fully understand
the impact of micro-architecture on the Web servers.

Another motivation, which is more important, is that
we believe macro-performance improvement has its
physical limitations like input/output processing and that
we cannot exceed these limitations. Flash Web server [21]
is claimed to be the fastest Web server and it outperforms
existing Web servers by up to 50%. There is still much
room to improve the Web server’s micro performance

which can lead to better macro-performance. In order to
understand how to improve the micro performance, we
need to explicitly study the behavior of frequently used
functions that contribute greatly to the execution time. A
far out research will then be to develop assembly language
instructions (like Intel MMX) for these functions or to
build specialized hardware units on the CPU for fast
execution of these functions.

To better understand the micro performance of web
servers, we build an experimental environment for
measuring the internal performance of a common modern
Web server, Apache [2]. We take advantage of gprof [11],
which is a program of GNU suite Unix tools [12], to get
detailed profiling information of the Apache server.
Through profiling the web server program, we are able to
evaluate the performance of the web server in terms of its
function calls. We identify the most time-consuming
functions and the most frequently called functions. These
functions are the bottlenecks to the server’s micro
performance and comprise the kernel of the web server.

Having known how much time these functions spend
and how frequently they are called, we extract the top 8
function calls from the Apache server program and use
them as the micro benchmark, ServBench. To make these
programs run in a real system, we also extract their
corresponding data structures together with the functions.
All the benchmark programs need workload to operate on.
We add some workload builder functions to the server
program. When Apache serves incoming requests, the
workload builder automatically generates the workload for
benchmark programs based on the actual processing of the
requests.

To know better the characteristics of the benchmark
programs, we port and run the programs in the simulator,
SimpleScalar [8]. As far as we know, ours is the first
attempt to port a Web server benchmark program to an
execution-driven simulator. By means of simulation, we
obtain the characteristics such as instruction level
parallelism, instruction frequencies, and cache
performance for the micro-benchmark as a function of
various architecture parameters. These characteristics are
of great help to the design of high performance Web
servers and Web-server-specific network processors.

We find that the average code size of ServBench is an
order of magnitude smaller than that of SPECint. Both
have similar instruction set characteristics. However,
ServBench has smaller basic-block sizes and nearly half
of the branches are taken and half not taken. This fact
makes better branch predication mechanism and lower
miss rate very important to the performance. We find that
the Apache Web server can benefit tremendously from
instruction level parallelism (ILP) because of the inherent
parallelism of the ServBench programs. Also, L1
instruction cache plays a more important role than data
cache in increasing the number of instructions executed
per cycle (IPC). IPC is not sensitive to the set-

associativity of instruction cache. We are able to achieve
higher IPC by using asymmetric L1 cache, by enlarging
the length of instruction fetch queue and by adding more
ALUs. However, 4 ALUs and an instruction fetch queue
of length 8 are enough to enhance the micro performance.

The rest of this paper is structured as follows. Section
2 describes profiling information of the measurement and
how we achieve the ServBench. This section also gives a
brief description of the experimental setup, how the web
server services the requests and how we measure the
architectural and functional performance using httperf [18]
and GNU profile tools [12]. Section 3 presents the
ServBench based on the profiling data in Section 2.
Section 4 presents characteristics of benchmark programs
including the instruction level parallelism, instruction
frequencies, and cache performance. Section 5 concludes
our work and suggests some future work.

2. Micro performance Measurement and
Profiling

2.1 Experimental Setup

To measure and profile Apache Web server in the
level of function calls, we have established an
experimental environment which is comprised of a Linux
server running Apache Web server, and several clients
running the Web server benchmarking tool, httperf. The
server and clients are connected to each other by a
dedicated Ethernet using a 100Mbps Ethernet switch. This
ensures that both the server and clients have access to
enough network bandwidth available thus both have
feasible high throughput and low response time. We have
carefully chosen the benchmarking parameters for httperf
including the request rate, number of requests, and
number of connections so that the server reaches its
possible highest throughput with the lowest load.

To get detailed profiling information, the Apache Web
server is compiled by gcc 2.91 with function profiling
option and optimization level O2. We use O2 level
optimization for the reason that the compiler only
performs target-processor independent optimizations and
does not exploit particular architectural features such as
loop unrolling for superscalar architectures.

The simulated processor architecture in SimpleScalar
tool set is a close derivative of MIPS architecture. In all
the simulations, the default issue width is 4; the default L1
caches are 4-way set-associative 16KB separate
instruction cache and data cache; the line size of L1 cache
is 32 bytes; the L2 cache is a 4-way set-associative 512KB
unified cache with line size of 64 bytes; and the simulator
is configured as out-of-order execution.

In addition to setting up the experimental network,
server and clients, we also build the realistic workload for

the server according to SPECweb99 [24]. The workload
consists of static files of four classes as shown in Table 1.

Classes File Sizes Target Mix
Class 0 less than 1K 35%
Class 1 less than 10K 50%
Class 2 less than 100K 14%
Class 3 less than 1000K 1%

Table 1. File size mix of workload

We did not measure the performance with blended
workloads which consist of both static and dynamic
requests for a simple reason: our goal is to characterize the
micro performance of the underlying processor and the
internal performance of the server program. To study the
micro and internal performance, we only need some
simple but typical workloads which can be used to make
the blended workloads. Dynamic requests always lead to
the execution of some external programs such as Java or
Perl CGI programs other than the Web server. The micro
performance of those programs executed dynamically is
not what we focus on.

2.2 Profiling Results

The clients in the experimental environment run
httperf simultaneously to request a particular file class
from the server. Apache Web server compiled with
profiling options services the requests and writes the
function profiling information to a specific binary output
file. Later, the binary file can be converted to plain text
file containing detailed profiling information using gprof.
We collect all the function profiling information from the
converted text file. We only pay attention to those
functions that involve no disk I/O or network I/O
activities directly since we focus on profiling the micro
performance of Apache Web server.

After having collected profiling information for all the
non-I/O functions, we rank the functions according to the
percentage of execution time they account for. The top 15
most time-consuming functions account for almost 60%
of execution time when the server services the HTTP
requests, as shown in Figure 1.

Top 15 Function Calls

0

5

10

15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Pe
rc

en
ta

ge
of

E
xe

cu
ti

on
T

im
e

%
Function Name % Function Name %

1format_converter 12 9check_hostalias 3
2pstrdup 6 10getword_white 3
3run_method 5 11process_item 2
4config_log_transaction 5 12conv_10 2
5pstrcat 5 13no2slash 2
6palloc 4 14getparents 2
7table_get 4 15get_module_config 2
8invoke_handler 3

Figure 1. Top 15 function calls

To our surprise, most of these functions are string
processing related functions. Only a small part of these
functions deal with the HTTP requests directly. This is
feasible because HTTP protocol is a text-based protocol
and the processing of HTTP protocol is essentially
processing of strings. Some of these functions are sub-
functions of others, for instance, process_item and
conv_10 are sub-functions of config_log_transaction and
format_converter, respectively.

3. ServBench

3.1 Selection of Benchmark Programs

Most of the functions in Figure 1 have supporting sub-
functions, for example, format_converter always calls
conv_10 to convert integer numbers and conv_fp to
convert floating-point numbers. Thus, we create fmt by
combining the main function, format_converter, with such
supporting functions as conv_10.

Some of the top 15 functions are just interfaces to a
group of functions, for example, run_method and
invoke_handler are called to invoke other functions
indirectly using function pointers, which can not be
identified by gprof. We do not consider these functions
because they spend very little time in invoking other
functions.

After having combined sub-functions with main
functions and deleted interface functions such as
run_method, we obtain eight sets of programs that are
most time-consuming, fmt, pitem, pal, pdup, pcat, gwd,
gwdw, and tget, as shown in Figure 2.1. These programs
are ranked according to the percentage of execution time
they spend. They account for 40% of total execution time
(without considering disk and network I/O time). In this
paper, we take these sets of programs as single functions
for clarity.

These eight programs have different frequencies as
shown in Figure 2.2. String allocation (pal) and
duplication (pdup) functions are called 100 and 36 times
respectively during Apache processes an incoming request.
However, other functions such as fmt account for more
execution time compared to pal although they are called
less frequently. The reason is that fmt is about an order of

magnitude larger than pal and pdup in the size of source
code and runtime kernel, as we will see in Section 5.2.

Percentage of Execution Time

0

5

10

15

20

f mt pi t em pal pdup pcat gwd gwdw t get

P
er

ce
nt

ag
e

%

(1) Percentage of execution time

Frequencies of Function Calls

0

20

40

60

80

100

120

fmt pitem pal pdup pcat gwd gwdw tget

C
al

ls
 p

er
 R

eq
ue

st

(2) Call frequencies
Figure 2. Benchmark programs: percentage of

execution time and call frequencies

We build the micro-benchmark, ServBench, based on
the above eight programs. There are several reasons for
which we choose them as the benchmark programs. First,
They are the most time-consuming elements of Apache
server. If we want to improve the micro performance of
Apache server, we will have to improve the performance
of these functions because they are the bottleneck
functions. Secondly, they are very frequently called when
Apache processes the requests. Thirdly, benchmark
programs should represent a wider application class in the
domain of interest. The above functions are general
functions to process the HTTP requests. Since HTTP
protocol is basically a text-based protocol, all the request
lines and header lines in the protocol payload are texts; to
generate the response headers and log the requests are
text-based as well. We believe every implementation of
Web servers needs to process the text-based request lines
and header lines very frequently. These string processing
functions are representatives of HTTP protocol processing
applications.

These programs can be divided into three groups.
Group 1 has fmt and pitem as string format conversion
programs; group 2 has pal, pdup, and pcat as string
generation programs; group 3 consists of gwd, gwdw, and
tget as string comparison programs.

3.2 String Format Conversion

String format conversion functions represent the
operations of converting a number of values to a string.
These functions are called to generate a response header
or to log the corresponding request. String format
conversion functions include fmt and pitem. Fmt is used
to convert all other types of data to a string, e.g.,
converting an integer to its corresponding printable string,
converting the request time to a string, and generating
weak Etags for response headers. Pitem is used to
generate the log entries for each of the incoming requests,
for example, request line, request time, client address, and
status of responses, etc.

3.3 String Generation

String generation functions, which include allocating a
memory block for a new string, duplicating a string, and
concatenating a number of strings, are very frequently
called during the process of incoming HTTP requests. As
mentioned before, HTTP protocol payload is text-based
strings. To manipulate the payload, the content of payload
which is comprised of many strings, has to be duplicated
and stored in user space buffers. For instance, Web
servers have to keep the state of a request in memory
which may consist of the request string and some of the
header strings. Web servers also need to log the requests
which requires keeping some of the request strings in
memory. These functions are also used in generating
response headers.

String generation functions include pal, a string
allocation function, pdup, a string duplication function,
and pcat, a string concatenation function.

3.4 String Comparison

String comparison functions are very often called as
well. These functions are used to extract a part from a
long string which consists of many sub-strings separated
by delimit characters such as blank space or colon. Tget,
gwd, and gwdw are the three programs in this category.
Gwd and gwdw are called to extract a “word” from a
string which comprises many words separated by blank
spaces or other predefined delimit characters. Tget is used
to retrieve the corresponding value of headers from the
HTTP requests. Since each request may have many
headers, which again consists of may key strings and their
corresponding value strings, tget is called to get the value
string for a specific key string.

4. Benchmark Characteristics

We have selected the following general areas of
characterization for further consideration: program code

sizes and kernel sizes, instruction set characteristics,
instruction level parallelism, and cache performance.

4.1 Methodology

We use SimpleScalar to study the characteristics of
these benchmark programs. SimpleScalar is an execution-
driven simulator package commonly used by computer
architecture researchers. SimpleScalar has its own C
compiler (a modified version of GNU GCC) with
associated utilities. We run the programs in the simulator
and get the detailed performance data by changing the
architectural parameters such as cache size, number of
ALUs, etc.

All the programs have to have some data to deal with.
To generate datasets for them, we insert some small
functions into Apache server to gather all the data needed
by each benchmark program. By doing so we are able to
get the data that is dealt with by Apache derived from the
realistic workloads, which is meaningful to characterizing
the benchmark. This method has a potential valuable
property: we are able to update the associated data for
each benchmark programs very easily as the workload
changes.

4.2 Program Kernel Size

Knowing the sizes of program kernels is useful for us
to learn the static properties such as the number of lines of
C code and size of compiled code, and dynamic properties
such as instructions executed at least once and instructions
accounting for 99% of execution time. We compare
ServBench programs to SPECint programs as well.

Table 2 shows the size of the C source code and
compiled executable of each benchmark program in both
ServBench and SPECint. The object code size does not
include dynamically linked libraries.

The average code size of ServBench programs is
28,679 bytes which is nearly an order of magnitude
smaller than that of SPECint programs. The differences in
code sizes of ServBench and SPECint programs come
from the different environments where the applications or
functions have been implemented and executed. String
generation functions such as pal, pdup, and pcat are the
most frequently referenced functions in Apache; they have
rather simple functionalities compared to other function
calls and applications. Other programs such as string
format conversion and comparison functions are larger in
code sizes in average. However, the SPECint programs
are actual applications in real systems. They all have
much more complex functionalities thus have much larger
object code sizes.

ServBench Code Size
(C Lines)

Code
Size

SPECint Code Size
(C Lines)

Code Size

Fmt 3,206 76732 126.gcc 206,000 1950000
Pitem 1396 20040 130.li 7,600 139000
Pal 326 9644 099.go 29,200 558000
Pdup 320 9628 134.perl 26,900 544000
Pcat 327 9992 124.m88ksim 19,900 404000
Gwd 427 75876 147.vortex 67,200 1150000
Gwdw 424 19560 132.ijpeg 31,200 594000
Tget 174 7960 129.compress 19,300 81700
Average 825 28679 Average 48700 678000

Table 2. Code sizes of ServBench and SPECint

ServBench Instructions
at Least once

Instructions
For 99%

SPECint Instructions
at Least once

Instructions
For 99%

Fmt 18400 1112 126.gcc 124246 15899
Pitem 1767 206 130.li 7341 408
Pal 660 198 099.go 12627 949
Pdup 657 226 134.perl 12313 875
Pcat 713 269 124.m88ksim 12284 542
Gwd 992 293 147.vortex 60630 1715
Gwdw 990 324 132.ijpeg 53629 6530
Tget 384 57 129.compress 2842 227
Average 3070 335 Average 35700 3390

Table 3. Dynamical Properties of ServBench and SPECint programs

The dynamical kernel size of ServBench is an order of
magnitude smaller than SPECint as well, as shown in
Table 3. A common rule, “90/10 rule”, can be seen from
the table in average: 90% of executed instructions are
derived from 10% of the instructions in the program. Most
of the programs have a relatively small kernel that account
for most of the execution time.

4.3 Instruction Set Characteristics

The instruction mix gives indications on the types of
instructions executed in the benchmark. Figure 3 presents
the frequencies of different types of instructions for each
ServBench program (instruction types are noted in the
figure). Averages for each of the three groups of
benchmarks, ServBench, and SPECint are also given in
Figure 4.

These two benchmarks have similar instruction set
characteristics in terms of the general trend and variability.
The average difference in frequencies between ServBench
and SPECint is between 5% (13% store instructions in
ServBench while 9% in SPECint) and 1% (42% integer
computation instructions in ServBench versus 43% in
SPECint).

Instruction Mix Characteristics

0%

20%

40%

60%

80%

100%

fmt pitem pal pdup pcat gwd gwdw tget

ld st ub cb int

Figure 3. Instruction mix characteristics (ld=load,
st=store, ub=unconditional branch, cb=conditional
branch, int=integer computation. No floating-point

instructions)

There are significant differences between the three
groups of benchmarks, Apache, and SPECint that can be
seen in from Figure 4.

The three groups of sub-benchmarks have different
instruction execution frequencies. For instance, G1 has
8% percent less load instruction than G2 and 4% less than
G3, however, it has 8% percent more integer computation
instructions than G2 and 5% more than G3. But all these
three groups have very similar percentage of store
instructions. Among the three groups, string comparison
functions have similar trend and variance to SPECint. The
difference is under 3% (12% store instructions in group 3
compared to 9% in SPECint). Other groups have much
significant and variable differences ranging from 1% to
6% in each instruction type.

Average Instruction Mix Per Group

0%
20%
40%
60%
80%

100%

G1 G2 G3

Pe
rc

en
ta

ge
%

ld st ub cb int

Figure 4. Average instruction mix (G1=string format
conversion, G2=string generation, G3=string

comparison)

4.4 Instruction Set Characteristics

Instruction level parallelism (ILP) is an important
issue in improving a Web server’s micro performance.
Knowing the benchmarks’ instruction level parallelism
can be of great help to the design of application specific
processors and architectures such as network processors.

We obtain the instruction level parallelism for each
benchmark program by changing such parameters as the
length of instruction fetch queue, the number of ALUs,
and branch prediction mechanism. All these parameters
have important impact.

Execution Time of Benchmark Programs

0

10

20

30

40

1 2 4 8

M
ill

io
ns

ILP

E
xe

cu
tio

n
T

im
e

fmt

pitem

pal

pdup

pcat

gwd

gwdw

tget

Average Execution Time

0

5

10

15

20

1 2 4 8

M
ill
io
n
s

I LP

E
xe

cu
tio

n
T

im
e

G1 G2 G3 AVG

Figure 5. Execution time of benchmark programs Figure 6. Avg. execution time of benchmark programs

Figure 5 shows the relationship between execution
time and ILP for each benchmark program. Figure 6
depicts the average execution time of each group of
functions. It is observed that it is almost enough for us to
achieve the best performance when ILP is 4.

Figure 7.1 and 7.2 depict the impact of instruction
fetch queue and ALU respectively.

With 8 ALUs and decode/issue bandwidth of 8
instructions per cycle, the highest instruction per cycle
(IPC), which is 2.1, can be reached when instruction fetch
queue is 8. Increasing the length of the queue is of no help
to enhance the performance. An instruction fetch queue of
length 8 is enough to achieve best performance in this
case. On the other hand, 4 ALUs are enough for achieving
best performance if the instruction fetch queue is 16 and
decode/issue bandwidth is 8. Increasing the number of
ALU does not help to improve the performance in terms
of IPC.

From the above observations, we see that 4 ALUs and
instruction fetch queue of length 8, or an ILP of 4, are
enough for best performance. However, there are intrinsic
reasons for this.

Impact of IFQ

0

0.5

1

1.5

2

2.5

2 4 8 16
IFQ Size

IP
C

fmt gwd gwdw

pal pdup tget

pcat pitem

(1) Impact of instruction fetch queue

Impact of ALU

0

0. 5

1

1. 5

2

2. 5

1 2 4 8
Number of ALUs

IP
C

f mt gwd

gwdw pal
pdup t get

pcat pi t em

(2) Impact of ALU
Figure 7. Impact of instruction fetch queue and ALU

Figure 8 shows the size of basic blocks of each
benchmark program and group. Most of the programs’
basic block sizes are less than 5 except pal which has the
size of 8. The three groups of programs have average size

of 5, 6, and 4.6 respectively. This means every 5 or 6
instructions in the instruction queue must have a branch
which is taken with a probability of nearly 50%, as shown
in Figure 9. Thus an instruction queue of length 8 has an
effective length of 4 due to half of the branches are taken
and the other half not taken. 4 ALUs are enough for best
performance for two reasons. One reason is that the
effective length of the instruction queue is only 4 which
means there are at most 4 instructions decoded and issued
to the ALUs. The other reason is that only 40%
instructions are integer computation instructions and that
the maximum decode/issue bandwidth is 8 instructions per
cycle, which means less than 4 instructions per cycle are
in need of ALU operations.

The miss rate of branch prediction mechanism has
much greater impact on IPC than expected. Both predict-
not-taken and predict-taken have nearly the same high
miss rate as shown in Figure 9.1. The bimod, 2lev and
combined techniques predict with an accuracy between
80% to 100% for different benchmarks. From Figure 9.2
we can see that IPC reaches more than 2 for most of the
programs with perfect branch prediction mechanism.
However, even with the best branch-prediction
mechanism, combining bimod with 2lev, IPC can only
reach 86% of IPC with perfect branch prediction. There is
much room for improving micro performance by means of
improving branch prediction hit rate.

4.5 Instruction Set Characteristics

Cache behavior is very important to the micro
performance. We measured the cache performance for
each ServBench program. Separate L1 instruction cache
and data cache were simulated. The size of data cache
ranges from 2KB to 256KB, that of instruction cache
ranges from 2KB to 64KB in Figure 10 and Figure 11,
which show the miss rates for a 4-way associative data
cache and instruction cache respectively. The results are
shown in terms of groups.

It seems that the size of instruction cache has greater
impact than data cache. The instruction miss rates for
small caches sizes are much higher than the corresponding
data cache miss rates. When cache size increases from
16KB to 32KB, data cache miss rate decreases 43% in
average (26% for G1, 34% for G2, and 58% for G3),
however, instruction cache miss rate decreases 76% in
average (52% for G1, 25% for G2, and 98% for G3).
When cache size increases from 32KB to 64KB, miss
rates of data cache and instruction cache decrease 23%
and 63% respectively in average. Large instruction cache
favors ServBench.

Basic Block Size

0

2

4

6

8

10

fmt gwd gwdw pal pdup tget pcat pitem

In
st

ru
ct

io
ns

Average Size of Basic Blocks

0
1
2
3
4
5
6
7

G1 G2 G3

In
st

ru
ct

io
ns

(1) Basic-block size per program (2) Basic-block size per group
Figure 8. Size of Basic Block of ServBench programs

Branch Prediction Hit Rate

0

20

40

60

80

100

fmt pitem pal pdup pcat gwd gwdw tget

Pe
rc

en
ta

ge
%

nottaken taken bimod 2lev comb

Impact of Branch Prediction on IPC

0

0. 5

1

1. 5

2

2. 5

f mt gwd gwdw pal pdup t get pcat

IP
C

not t aken t aken per f ect bi mod 2l ev comb

(1) Branch-prediction Hit Rate (2) Impact of Branch Prediction on IPC
Figure 9. Impact of Branch Prediction

G1 Miss Rate

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

2 4 8 16 32 64 128 256

P
er

ce
nt

ag
e

% fmt

pitem

G2 Miss Rate

0

1

2

3

4

5

6

7

8

9

2 4 8 16 32 64 128 256

P
er

ce
nt

ag
e

% pal

pdup

pcat

G3 Miss Rate

0

1

2

3

4

5

6

7

2 4 8 16 32 64 128 256

Pe
rc

en
ta

ge
%

gwd

gwdw

tget

Figure 10. L1 Data Cache Miss Rate as a function of cache size

G1 Miss Rate

0

2

4

6

8

10

12

14

16

2 4 8 16 32 64

P
er

ce
nt

ag
e

%

fmt

pitem

G2 Miss Rate

0

2

4

6

8

10

12

14

16

2 4 8 16 32 64

P
er

ce
nt

ag
e

%

pal

pdup

pcat

G3 Miss Rate

0

5

10

15

20

25

30

2 4 8 16 32 64

P
er

ce
nt

ag
e

%

gwd

gwdw

tget

Figure 11. L1 Instruction Cache Miss Rate as a function of cache size

Figure 12 compares the ServBench, SPECint, and the
three groups of benchmark programs. We need at least
16KB instruction cache to obtain the miss rate under 2%
and 32KB to lower the miss rate to 1%. Although the
kernels of ServBench programs are small, there are a lot
of standard library functions called by the kernels which
makes the instruction cache miss rate higher than expected.
Compared to SPECint, only G2 programs, which have the
smallest kernel, have lower miss rate.

Compared to instruction cache behavior, data cache
performance of ServBench is more similar to that of
SPECint. The data cache miss rates for ServBench are
roughly half that of SPECint.

4.6 Instruction Set Characteristics

It seems that L1 instruction cache has greater impact
on the micro performance. From cache performance
results we observe larger instruction cache favors
ServBench. We obtain memory access behavior measured
by memory accesses per instruction (MAPI), as shown in
Figure 13.

Figure 13 shows the memory access behaviors of
benchmarks and Apache. We define memory access per
instruction (MAPI) as the ratio of number of memory
references for data to the number instructions executed in
a run. MAPI represents the frequency of memory accesses
in terms of instruction execution. ServBench has a similar
MAPI as SPECint with a variance of less than 3%.

Memory Access Behaviors

0

10

20

30

40

50

G1 G2 G3 ServBench SPECint

M
A

PI
(%

)

Figure 13. Memory Access Behaviors

Based on the above results and observations, it is
possible to use asymmetric L1 caches to improve the
micro performance. Most of present processors have
symmetric L1 caches. For example, the mainstream
microprocessor, Pentium II processor, has symmetric L1
instruction cache and data cache, both of which have
16KB. However, asymmetric L1 caches are more suitable
to improve the performance. Figure 14 depicts the
different impacts of L1 instruction cache and data cache
on IPC. Increasing the size of L1 instruction cache

contributes 60% performance improvement when the size
ranges from 8KB to 128KB.

Different Impacts of L1 Instruction Cache and
Data Cache

0

0.5

1

1.5

2

8k 16k 32k 64k 128k 256k

IP
C

DCache
ICache

Figure 14. Different Impacts of L1 Caches on IPC

Based on the above observations, when we combine
the results of Table 2 and Table 3 with those in Figure 2,
we propose that these micro kernels be put in a part of the
instruction cache which is not replaced to make room for
other instructions.

5. Conclusions

This paper has presented a micro-benchmark,
ServBench, for use in benchmarking the micro
performance of Web servers. All the benchmark programs
are taken from the implementation of the most commonly
used Apache Web server by measuring and profiling the
server with realistic workloads. We do not consider
network and disk I/O functions for the reason that there
has already been extensive research in decreasing and
optimizing the network and I/O latency. All the dataset for
the benchmark are obtained from the realistic workloads.
Then we port the micro-benchmark and Apache Web
server to SimpleScalar simulation environment. We obtain
execution time, branch prediction and cache miss results
for the micro-benchmark as a function of various
architecture parameters.

The average code size of ServBench is an order of
magnitude smaller than SPECint. Both have similar
instruction set characteristics. ServBench has smaller
basic-block sizes and nearly half of the branches are taken
and half not taken. This fact makes better branch
predication mechanism and lower miss rate very
important to the performance.

By comparing ServBench and SPECint, we observe
that L1 instruction cache plays a more important role than
data cache in improving micro performance. We prove
this observation by porting and running Apache in
SimpleScalar simulation environment. We find that
instructions executed per cycle are increased by 60%
when the size of L1 instruction cache increases from 8KB
to 128KB. Asymmetric L1 caches help to improve micro
performance greatly. We are able to achieve higher IPC
by using asymmetric L1 cache and enlarging the length of

instruction fetch queue and adding more ALUs. However,
4 ALUs and an instruction fetch queue of length 8 are
enough to enhance the micro performance.

References

[1] M. Almeida, V. Almeida, D.J. Yates, Measuring the
Behavior of A World-Wide-Web Server, 7th IFIP Conference on
High Performance networking (HPN), White Plains, NY, Apr.
1997
[2] Apache, http://www.apache.org/
[3] M.F Arlitt, C.L. Williamson. Web Server Workload
Chracterization: The Search for Invariants, Proceeding of the
ACM SIGMETRICS Conference on the Measurement and
Modeling of Computer Systems, pages 126-137, 1996
[4] G. Banga, P. Druschel, Measuring the Capacity of a Web
Server, Proceedings of the USENIX Syposium on Internet
Technologies and Systems, Monterey, Dec 1997
[5] G. Banga, P. Druschel, J. C. Mogul. Better Operating System
Features for Faster Network Servers, Proceedings of the
Workshop on Internet Server Performance, Madison, WI, June
1998
[6] G. Banga, J.C. Mogul, Scalable Kernel Performance for
Internet Servers Under Realistics Loads, Proceedings of 1998
Usenix Annual Technical Conference, New Orleeans, LA, June
1998
[7] P. Barford, M. Crovella, Generating Representative Web
Workloads for Network and Server Performance Evaluation,
Proceeding of the ACM SIGMETRICS’98 Conference,
Madison, WI, 1998
[8] D. Burger, T.M. Austin, The SimpleScalar Tool Set, Version
2.0, Technical Report, Computer Science Department,
University of Wisconsin-Madison, June 1997
[9] S. Glassman, A Caching Relay for the World Wide Web.
WWW’94 Conference Proceedings, 1994
[10] N. Gloy, C. Young, J. Chen, M. smith, An Analysis of
Dynamic Branch Prediction Schemes on System Workloads,
Proceedings of the International Symposium on Computer
Architecture, May 1996
[11] S.L. Graham, P.B. Kessler, M.K. McKusick, gprof: A Call
Graph Execution Profiler, Proceedings of the SIGPALN ’82
Symposium on Compiler Construction, SIGPLAN Notices, Vol.
17, No. 6, pp. 120-126, June 1982
[12] GNU Unix Toolset. Information and binaries available at
http://www.gnu.org/
[13] V. Holmedahl, B. Smith, and T. Yang, Cooperative caching
of dynamic content on a distributed web server, Proceedings of

7th IEEE International Symposium on High Performance
Distributed Computing (HPDC-7), Chicago, IL USA July 28-31,
1998.
[14] Y. Hu, A. Nanda, Q. Yang, Measurement, Analysis and
Performance Improvement of the Apache Web Server, the 18th
IEEE International Performance, Computing and
Communications Conference (IPCCC'99), Phoenix/Scottsdale,
Arizona, February 1999
[15] C. Huitema, Network vs. Server Issues in End-to-end
Performance, Keynote Speech, Performance and Architecture on
Web Servers (PAWS), June 2000
[16] R. Iyer, Exploring the Cache Design Space for Web Servers,
Proceedings of the 15th International Parallel and Distributed
Processing Symposium (IPDPS'00), San Francisco, CA , April
2000
[17] S. Manley, M. Seltzer, M. Courage. A Self-Scaling and
Self-Configuring Benchmark for Web Servers. Proceeding of the
ACM SIGMETRICS’98 Conference, Madison, WI, 1998
[18] D. Mosberger, T. Jin, httperf---A Tool for Measuring Web
Server Performance, Workshop on Internet Server Performance
(WISP98), Madison, Wisconsin, June 23, 1998
[19] E. Nahum, T. Barailai, D. Kandlur, Performance Issues in
WWW Servers, Proceedings of the international conference on
Measurement and modeling of computer systems, 1999
[20] NetPerf, http://www.netperf.org/
[21] V. Pai, P. Druschel, W. Zwaenepoel, Flash: An Efficient
and Portable Web Server, Proceedings of the USENIX 1999
Annual Technical Conference, Monterey, CA, June 1999
[22] V. Pai, P. Druschel, W. Zwaenepoel, IO-Lite: A Unified
I/O Buffering and Caching System, ACM Transactions on
Computer Systems, Vol. 18, No. 1, pp.37-66, February 2000
[23] R. Radhakrishnan, L.K. John, A Performance Study of
Modern Web Applications, Euro-Par 1999, Lecture Notes in
Computer Science, Springer, pages. 239-247, 1999
[24] SPECWeb99 Benchmark, http://www.spec.org/osg/web99
[25] Standard Performance Evaluation Corporation, SPEC
CPU95 Version 1.10, August 21, 1995
[26] G. Trent, M. Sake, WebStone: the First Generation in HTTP
Server Benchmarking, White Paper, Silicon Graphics, Feb 1995
[27] WebBench, http://www.webbench.com/, Ziff Davis, Inc.
March 2000
[28] D.J. Yates, V. Almeida, J.M. Almeida, On the Interaction
Between an OS and Web Server, Boston University Computer
Science Department, Boston Univ., MA, Tech Report CS 97-012,
July 1997

Session 3

Architecture Evaluation and Modeling

Compressibility Characteristics of Address/Data
Transfers in Commercial Workloads

Krishna Kant and Ravi Iyer
Enterprise Architecture Laboratory

Intel Corporation

Performance Workloads in a Hardware Multi Threading
Environment

Bret Olszewski and Octavian F. Herescu
IBM

A Processor Queuing Simulation Model for
Multiprocessor System Performance Analysis

Thin-Fong Tsuei and Wayne Yamamoto
Sun Microsystems

Compressibility Characteristics of Address/Data Transfers in
Commercial Workloads

Krishna Kant and Ravi Iyer
Enterprise Architecture Laboratory

Intel Corporation
fkrishna.kantjravishankar.iyerg@intel.com

Abstract

In this paper, we evaluate the compressibility of address
and data transfers in commercial servers. Our proposed
compression scheme is geared towards improving the ef-
ficiency of the transfer medium (busses, links etc) and
increasing the performance of the system. We evalu-
ate the potential of the basic compression techniques for
two commercial workloads – SPECweb99 [21] and TPC-
C[22] – based on trace-driven simulations. Based on
the obtained results, we show that simple compression
schemes show significant promise for reducing address
bus width and moderate benefits for data bus width reduc-
tion. We also show the sensitivity of these performance
benefits to the number of bits compressed and the size
of the encoding/decoding table used. Additionally, we
propose enhancements to the compression schemes based
on (1) recognizing and utilizing data-type specific knowl-
edge and (2) improving the replacement policy of the en-
coding/decoding table. The performance benefits of bus
compression schemes with these enhancements are also
presented and analyzed.

1 Introduction and Motivation

With the increasing demand for high performance sys-
tems, commercial servers are now designed with large
caches and larger memory resources. In order to reduce
the amount of resources needed, researchers have pro-
posed compression as a solution. This includes com-
pressed storage techniques [19, 26], compressed main
memory [1, 23] to reduce memory resources needed and
cache compression techniques [14, 27] to reduce the
amount of cache space needed.

Our focus in this paper is to design simple compres-
sion schemes that helps reduce the amount of information
transferred between the processor caches and the memory
subsystem. This compression is primarily geared towards
improving the performance and efficiency of the transfer
medium (busses, links etc). Current generation front-end

and back-end servers are typically bus-based, with each
system bus supporting several processors. As we look at
the potential for bus-based systems in the future, we find
three key design pressures: (1) to scale in frequency com-
parable to processor frequency improvements, (2) to sup-
port larger bus widths for transferring larger cache lines
within the same amount of time and (3) to continue to pro-
vide scalability with multiple processors. In this paper, we
evaluate the benefits of simple compression techniques in
reducing the amount of address and data transferred over
the bus, thereby allowing for narrower busses, less cross-
talk and potentially higher frequencies. It is important to
note here that the benefit of compressing the information
transferred between processor and memory not only ap-
plies to busses but also to point-to-point links that might
replace busses in future servers. In the case of point-to-
point links, the benefit of compression materializes as a
reduction in the transfer latency (since much less data is
transferred over the link).

Our main contribution in this paper is as follows. We
present the basic premise of the compression techniques
used for reducing address and data transfer lengths. We
discuss the locality properties in address and data streams
while running commercial workloads on servers. We
evaluate the potential of the basic compression techniques
for two commercial workloads – SPECweb99 [21] and
TPC-C [22]. The evaluation is based on analyzing vari-
ous traces collected on real systems. Based on these re-
sults, we show that simple compression schemes show
significant promise for reducing address bus width and
moderate benefits for data bus reduction. We show the
sensitivity of these performance benefits to the number of
bits compressed and the size of the encoding/decoding ta-
ble used. Additionally, we propose enhancements to the
compression schemes based on (1) recognizing and uti-
lizing data-type specific knowledge and (2) improving the
replacement policy of the encoding/decoding table. The
performance benefits of bus compression schemes with
these enhancements are also presented and analyzed.

The rest of this paper is organized as follows. Section 2

provides an overview of related work on compression
schemes for servers. Section 3 presents the basic premise
behind the address and data compression schemes and
proposes potential enhancements. Section 4 provides an
overview of our evaluation methodology covering details
of workloads and traces. Section 5 presents the salient
results and provides a detailed analysis of the benefits.
Finally, section 6 summarizes the paper and presents a
direction for future work in this area.

2 Background on Compression
Techniques

In this section, we provide a brief overview of the past
work in the compression area, particularly as it relates to
increasing the system performance.

2.1 Disk/Memory Compression Techniques

Several papers including [19, 26, 13] have investigated the
use of compressed storage to reduce paging. These swap-
space compression techniques use a LRU main-memory
cache to hold evicted pages in compressed form and in-
tercept page faults to check if the requested page is avail-
able in the cache before a disk access is initiated. Such an
approach could significantly improve the performance for
applications that require a large amount of memory but
do not manage their paging behavior. For example, scien-
tific applications working with huge matrices or other data
structures could benefit from this technique. Most of the
server applications such as DBMS or web-servers care-
fully manage the paging activity and are unlikely to see
any significant benefits from swap-space compression. In
fact, the loss of memory to compressed cache and the
overhead of compression/decompression could well de-
teriorate performance.

A slight extension of swap space compression is com-
pressed disk cache which introduces a compressed cache
for all disk I/O (including paging and file I/O). In addi-
tion to the evicted pages, this cache also stores the files
evicted from the O/S or application managed file cache.
Due to a much large space needed for the compressed
disk cache, dynamic cache size adjustment similar to the
one in [26] is necessary to ensure that the compressed
cache does not starve the normal disk cache. Workloads
that require a significant amount of I/O per transaction
could benefit significantly from the compressed cache.
Alternately, a compressed cache could allow the use of
a lower performance disk subsystem and thereby signifi-
cantly lower the total system cost. High density front-end
servers could benefit from this because of their physical
space and power limitations which do not allow large I/O
subsystems.

An even more extensive use of compression involves
storage of all main memory data in compressed form. Un-
like the last two schemes, compressed storage of all data
is much more complex since it introduces a new address
space (the compressed physical address space) along with
the issues of efficient storage and address translations.
Furthermore, if memory accesses from bus masters are
to be kept transparent, it is necessary to introduce a de-
compression cache where cacheline level accesses can
be satisfied. IBM’s MXT technology [1], takes this ap-
proach along with the added flexibility that certain regions
of the memory can be set as compressed while others
are uncompressed. Reference [23] describes the details
of IBM’s Pinnacle chipset that supports this technology.
It compresses memory in 1 KB blocks and stores com-
pressed blocks using up to four 256 byte segments. These
segments could be located anywhere in the physical mem-
ory and are accessed using 4 pointers in the header part of
each block. Although this generality avoids storage frag-
mentation, simpler schemes may be preferable.

2.2 Compression Algorithms

With the considerable interest in compression in the main
memory, several studies have examined compressibility
of main memory data and specialized compression algo-
rithms. Reference [12] studies compressibility of many
popular Unix desktop applications using both the tra-
ditional algorithms (e.g., LZW, Arithmetic coding [20])
and the X-RL algorithm invented by the authors [13].
The latter algorithm encodes 4 bytes at a time using par-
tial matching of bytes and dynamic coding based on a
small dictionary. It is claimed to be especially suited for
small block sizes and hardware implementation. The au-
thors show that this can be easily implemented in hard-
ware to provide 4 bytes/cycle input rate to the compres-
sor/decompressor. The adaptive LZ77 (de)compressor
in IBM-MXT also achieves a similar rate, but appears
more expensive to implement [4]. Since reads are typ-
ically lot more prevalent than writes, it generally helps
to use asymmetric algorithms where the decompression
speed is significantly higher than the compression speed.
This property is particularly important to the implemen-
tation suggested in this document. Both LZ77 [28] and
X-match [13] have this property, but LZ78 (or its variant
LZW [25]) do not.

High order bits in basic data types often show a low en-
tropy. This observation has been exploited in [26] which
introduces a new compression scheme that examines 32
bits at a time and looks for redundancies in the 22 MSBs
only. For certain types of data (e.g., integers, floating
point), this could make the compression more effective
than a traditional byte based compression. This leads
to the following general observation: when dealing with

structured data, it is useful to do compression in the units
in which the data items are accessed. In particular, in a
relational database environment, it makes sense to base
compression on data fields or sets of fields (e.g., keys),
etc. Reference [7] addresses this primarily front the point
of reducing the cost of I/O subsystem.

Compression of machine code presents a rather unique
case. Viewed based on the bit/byte patterns alone, code
does not provide too much opportunity for compression.
However, it is possible to exploit the knowledge of about
the instruction format in order to reduce the number of
bits needed to identify the instructions. Reference [5]
shows that it is possible to achieve compression ratios of
3-5 for code in this manner. Several other issues have also
been examined in code compression including special
algorithms that allow decompression starting with any
cacheline [16] and procedure based compression where
individual procedures are compressed as a unit and de-
compressed at run-time as needed [11]. Reference [15] re-
views several code compression techniques and examines
the performance of hardware managed code compression
available in IBM PowerPC 405.

2.3 Cache Compression Techniques

Although much of the compression-related work has con-
centrated on compressed storage on disk and in main-
memory, there are a few notable attempts to use compres-
sion within the processing core as well. In most cases,
processor registers and L1 cache store uncompressed data
and compressed storage is confined to L2 cache. Ref-
erence [14] discusses a selective compression scheme
wherein the memory and L2 cache addressing is in terms
of blocks of the size of one cacheline (as usual) except that
a block may contain either one uncompressed cacheline
or two adjacent compressed cachelines. This is driven by
compressibility considerations — if two adjacent cache-
lines compress to no more than one block the storage
is in compressed form, else it is in uncompressed form.
The cache mapping scheme remains unchanged so that
the cache storage of uncompressed lines is resolved in the
usual way. For a compressed line however, the sets corre-
sponding to both lines (i.e., with least significant address
bit being both 0 and 1) are examined. The scheme uses
a small decompression buffer between L2 and L1 which
acts just like an intermediate cache. Eviction of a modi-
fied line from L1 that is a part of a compressed block in
L2 results in decompression of the whole block, modifi-
cation of the relevant part, recompression and writeback
to L2. The main memory storage scheme used in [14] is
rather simplistic and remains in the units of pages of nor-
mal size and half-size. A half-page is used if all blocks
within a page are compressed. Additional bits are used
in page tables to handle two different page sizes and to

identify the compressed/uncompressed nature of individ-
ual blocks within a page. The paper shows detailed sim-
ulation results for SPEC95 benchmark to confirm the re-
duced miss rate and read/write traffic in the core.

Compression at the L1 level has also been considered.
Reference [27] considers a scheme similar to the one
above, i.e., two adjacent cachelines are mapped to either
of the two adjacent sets if it is to be stored in compressed
form. The main difference is that the compression is not at
the level of cachelines, but instead for individual “items”
(e.g., 32-bit words) in a cacheline. This compression is
based on the premise that a majority of accesses are to a
small set of values (e.g., 0, 1, starting address of a large
array, substring of spaces, etc.) and thus can be easily re-
placed by an index into a table containing “frequent val-
ues”. For this reason, the technique is also known as fre-
quent value compression. The major problem with this
scheme is the determination of most frequent values and
the latency of additional table lookup.

3 Our Focus: Compression of Ad-
dress/Data Transfers

The nature of the information can often be exploited for
reducing the number of bits needed in the representation.
For example, reference [6] makes the observation that the
addresses appearing on the address bus show consider-
able locality which can be exploited for reducing the num-
ber of address lines. This is done by only transmitting
high order bits of the address and obtaining the low or-
der bits from an encoding/decoding table. Reference [3]
proposes a similar scheme for the data lines based on the
locality in data values. In particular, based on technical
workloads, the paper claims that 16 LSB data lines carry
90% of the information contained in 32 bit data items.
These studies were done for uniprocessor systems with
very small caches and also for technical workloads only.
In this paper, we start by verifying the effectiveness of
such a scheme for commercial workloads as well as for
multiprocessor servers. Additionally, we propose various
enchancements to the compression technique and evaluate
their effectiveness over the base scheme.

3.1 Compressing Address Transfers

We start by describing the basic scheme for compressing
address bits for processor-memory transfers. If succes-
sive memory accesses are mostly concentrated within a
small region, the high order address bits will change infre-
quently and need not be transmitted every time. Instead,
a dynamic encoding scheme could put the high-order bits
in an encoding table (or cache) and transmit only the table
index for later “hits” in the table. The first time around,

the high order bits are transmitted so that an identical de-
coding table can be built on the other side as well without
any special information transfer. Figure 1 illustrates this
scheme with a 64 entry encoding/decoding table incor-
porated into a conventional (base) system as an example.
The base system with support for 36-bit addressability is
shown in Figure 1(a). In Figure 1(b), the system with ad-
dress bus compression is based on 18 low-order bits and
18 high-order bits. The low order bits are transmitted di-
rectly. The high order bits are looked up in a 64-entry
encoding table. If the entry is found (table hit), only a
6-bit index to the decoding table need be transmitted for
the high-order part. Thus a 24-bit address bus suffices. A
miss will, of course, require data transfer over 2 cycles.
(Compressed and uncompressed transfers can be distin-
guished by a special treatment of table entry 0.) Thus,
if a high table hit ratio can be achieved, the compressed
bus provides 33% reduction in width over the original bus
with only a small performance penalty.

3.2 Compressing Data Transfers

A scheme similar to the address transfer compression
scheme can be envisioned for compressing data transfers
over the data bus as well. One major difference, however,
in the data transfer case is that each cache block needs be
divided into further smaller chunks before being encoded
or compressed. However, choosing the right chunk size
is not an easy task since the data accessed from the mem-
ory subsystem can be of various types (integer, pointer,
floating point, code etc.) and lengths. The compressibil-
ity characteristics are very much dependent on the data
type. For example, large values are rare for integers. This
implies that the high-order bits for integers are usually all
0’s or 1’s, thus making integers a good candidate for com-
pression. Pointer data typically shows considerable local-
ity — long jumps or successive references to data items
that are far apart are rare. However, this locality is in the
virtual address space; it will be preserved only if the phys-
ical memory allocation is reasonably contiguous. Float-
ing point data (single precision float or double precision
double types) are usually poor candidates for compression
except for generally very small exponents and frequent
values like 0 or 1. Code data type also offers poor com-
pressibility unless the knowledge of instruction set is ex-
ploited (which may be expensive for on-line use). Finally,
the character string data offers moderate compressibility
if the string length can be determined.

The main virtue of data type idenfication is that it al-
lows certain optimizations that would be unavailable if
all data were to be treated identically. For example, it
makes sense to use the same number of low-order bits for
both addresses and pointer data, and one may even con-
sider a single encoding table for these. Similarly, if the

double and/or code datatypes offer very poor compress-
ibility, it might be preferable not to encode them at all
since they would only pollute the encoding table. Even if
all data is handled identically, it is interesting to find out
what kind of hit ratios various data types get. In current
architectures, data type information is not available for
bus transfers (except for code fetch vs. data read/write);
therefore, the identification must be based entirely on bit-
patterns and could not be accurate. Fortunately, for our
purposes, an accuracy of 80-90% is good enough. A
good bit-pattern based identification depends on several
factors including frequently used data types, machine ad-
dressability (32-bit or 64-bits), and compiler characteris-
tics. Our method applies to the code generated by most C-
compilers for most 32-bit machines. The method assumes
implicitly that 8/16 bit integers and float datatype occur
only sparingly. For simplicity, we consider data in 32-bit
chunks only, which means that character and “short” in-
teger data aligned on smaller boundaries will be missed.
The details of our method are as follows.

� Code Data Type – Code fetches are easy to iden-
tify correctly since code fetches appearing on the
bus usually possess a different request id than reg-
ular data reads.

� Integer Data Type – Here we check if the 8 MSBs
are 00 or FF (in hex) in a 32-bit word. Note that if
the 32-bit word contains 2 “short” (or 16 bit) inte-
gers, they will be regarded as single 32-bit integer.
The scheme will work for 64-bit integer representa-
tions as well provided that the actual values of these
variables rarely exceed 2

31.

� Text Data Type – This is identified by checking
whether in each 32-bit word, every 8th MSB is 0 and
at least one 7th MSB is 1. This is basically looking
for 7-bit ASCII characters, at least one of which is a
printable character.

� Double/Float Data Type – If two contiguous 32-bit
words are neither Integer not Text, we look at first
5-bits to recognize small positive or negative expo-
nents in the standard IEEE floating point format. If
recognized as such, the data is declared as double.
Note that this scheme will recognize two contiguous
floats as a double — beyond this, no effort is made
to recognize floats.

� Pointer Data Type – If a 32-bit word does not fall
in any of the above categories, then the data type is
assumed to be a pointer.

The above method needs some changes for 64-bit ma-
chines since the pointer data now occupies 64-bits. Most
machines use (and are likely to use for quite some time)

Chipset Memory

(b) System with ABUS compression(a) Base System

P

24 bits ABUS

18 LO bits (eg: 64 entries)
Encoding Table

18 LO bits 18 HI bits

P

36 bits ABUS

36 bits

Chipset Memory

6 bits

18 HI bits

Decoding Table
(eg: 64 entries)

Figure 1: Illustration of Basic Compression Scheme (eg: for Address Transfers)

much fewer than 64-bits for addressing. For example, In-
tel’s IA-64 architecture uses only 44-bits, which can ad-
dress 16 TB of memory. This information along with the
fact that the top 8 or more bits are unlikely to change much
can be exploited for identifying pointer data more directly
and compressing it more efficiently. If the compiler allo-
cates 64-bits by default for integers, one could exploit this
too, but since the top 32 bits will almost always be all 0’s
or all 1’s, dealing with 32-bit chunks will work just as
well.

4 Workload Traces, Tools and
Methodology

Our evaluation methodology relies on bus traces collected
on real systems running commercial workloads such as
SPECweb99 and TPC-C. Here we present an overview
of the two benchmarks and the trace configuration. We
also describe the trace-driven tools developed to simulate
the encoding/decoding table and its performance benefits.
Finally, we present the scope of the studies undertaken.

4.1 Workloads and Traces

For this study, we used bus traces that were collected on a
web server running SPECweb99 and on database servers
running TPC-C.

SPECweb99 [21] is a benchmark that attempts to
mimic a web server environment. The benchmark setup
uses multiple client systems to generate aggregate load on
the system under test (a web server). Each client (mimic-
ing browsers) makes static GET, dynamic GET or a POST
request to the server. The get requests always retrieve a
file from the server, but for dynamic gets, the file may
be appended with some dynamically generated data. The
retrieved file comes from a file-set with access character-

istics defined via a 2-level Zipf distribution. Some stud-
ies on cache/memory access characteristics of web work-
loads can be found in [17, 8, 9]. For our study, we used
SPECweb99 traces from a 2P web server since a dual-
processor configuration is more characteristic of systems
used in this market segment.

TPC-C [22] is an online-transaction processing bench-
mark that mimics a parts ordering database system. The
transactions include entering and delivering part orders,
recording payments, checking the status of orders, and
monitoring the level of stock at the warehouses. Some
studies on the cache/memory access characteristics of
OLTP workloads can be found in [2, 18, 10]. For our
study, we used TPC-C traces from a 4P system. In addi-
tion to the above mentioned 32-bit systems, we also used
a TPC-C trace from a 4P 64-bit system for understand-
ing the impact of compression schemes on 64-bit archi-
tectures.

4.2 Simulation Tools and Studies

To perform the compressibility analysis, we developed a
tool called Simulator for COmpressed Transfers (SCOT).
SCOT basically provides mechanisms to simulate encod-
ing/decoding tables for both address & data transfers. The
management of data in the encoding/decoding table is an
important aspect that needs to be addressed. Our aim in
this paper is only to show the potential of compression
schemes for address/data transfers. We plan to investi-
gate detailed design issues for the encoding/decoding ta-
ble in the future after determining that there is some per-
formance potential to be taken advantage of. So, in this
early evaluation, we consider the encoding/decoding table
to be a fully associative array. We determine the perfor-
mance potential (in hit ratio) of this scheme as a function
of the encoding size (number of high-order bits that are
compressed) and the size of the encoding/decoding table.
We then study the impact of different replacement strate-

gies (FIFO, LRU and our proposed MLRU policy). While
the first two are well understood, our proposed MLRU
scheme is based on giving lower priority to blocks that are
first brought in. The plain LRU scheme can be thought of
in terms of a stack with the blocks ordered in terms of
their access time. So, in the LRU scheme, when a block
is first placed on the stack, it is given the highest prior-
ity. The MLRU scheme alters the priority of incoming
requests by using a parameter that controls where they
are placed among the list it is placed. For the results pre-
sented here, an incoming block is placed only 25% above
the lowest priority block. As a result, if the block is not
accessed soon after it is entered into the stack, it is re-
placed. This tends to filter out one-touch references [24]
and thereby leads to better performance than plain LRU.

5 Preliminary Results and Analysis

5.1 Compression Characteristics of Ad-
dress Transfers

The performance benefits from the basic compression
scheme for address transfer in 32-bit systems is shown
in Figures 2 and 3. The x-axis in these figures denotes the
table size (on a log scale) and the y-axis represents the hit
ratio in the encoding/decoding table. For these results, a
FIFO replacement policy is assumed. It is found that 85-
90% hit ratio is easily achieved by using a table size of
64 entries and 20 high order bits (out of a total of 36 bits).
The total number of address lines needed in this case is 22
(16 low order bits + 6 bit table index), which corresponds
to a 39% reduction. This verifies that the compression
scheme continues to work for commercial server work-
loads and for much larger caches than those considered in
the original reference [6].

We experimented with a 64-bit system configuration as
well. Here we chose the top 24 bits (out of a total of 44
bits) for compression. Only one trace (TPC-C with 16
GB of memory) was available in this case, so the results
shown in Figure 4 should be considered as somewhat pre-
liminary. We found that a 85-90% hit ratio needed a larger
table size of 256 entries, which gives a savings of 16/44
= 36%. One reason for not getting better results is the
larger database size and throughput for this configuration
(consistent with 16 GB installed memory) which may re-
duce locality. The other possibility is the O/S (Windows
2000 for this configuration vs. NT4.0 for the 32-bit con-
figuration). The O/S could affect the locality in two ways:
(a) Size and locality of the O/S code itself, (b) Virtual to
physical address mapping, since the mapping could per-
turb the inherent program locality significantly. In fact,
an important point to keep in mind is that if address com-
pression is to be exploited fully, the mapping algorithms

should also be redesigned so that they don’t significantly
increase the entropy of the high order address bits. In
this sense, our results are conservative and would improve
with better address mapping schemes.

In order to attempt to increase the address table hit
ratio further, we explored the use of better replacement
policies. We tried three schemes: FIFO being the base,
the well-known LRU scheme and our proposed MLRU
scheme as described in Section 3. Figure 4 presents the
benefits of the MLRU scheme for 64-bit systems. As
shown, the MLRU scheme improves the address table hit
ratio by roughly 5%. We will show the effectiveness of
the MLRU scheme for data transfers also in the following
subsection.

5.2 Compression Characteristics of Data
Transfers

For data transfer compression in 32-bit machines, we used
16-high order bits of each 32-bit word for compression
(thus avoiding any special treatment of double datatypes).
Note that this choice makes the pointer data and address
compression mutually compatible since 16 lower order
bits are used in each case. Figure 5 illustrates the results
for TPC-C. For these results, all data types were encoded
through the same table. This coupled with the fact that
16-high order bits are used for all data types means that
the data type identification is not required and does not
affect the results. (The identification was still done in or-
der to obtain data-type specific hit ratios). It is seen from
Figure 5 that assuming a maximum reasonable table size
of 256 entries, the achievable hit ratio on 32-bit systems
is only 73% with the FIFO policy and 78% with MLRU
policy, both of which are perhaps not very attractive.

Windows O/S allocates integers as 32-bit quantities
even on a 64-bit machine. Therefore, for data transfer
compression in 64-bit machines, we continued to com-
press 16 high-order bits of successive 32-bit words for all
data-types except pointers. In order to make the treatment
of pointers compatible with addresses, we use top 44 bits
of 64-bits for compression. Of course, first 20 bits out
of these are guaranteed to be zero since the addresses are
only 44-bits long. (This obviously requires identification
of pointer data based on bit patterns.) Figure 6 illustrates
the results for TPC-C. It is seen that the performance in
this case is significantly better than it was on 32-bit sys-
tems. In particular, for a 256-entry encoding/decoding ta-
ble, we get a hit ratio of roughly 87% with FIFO policy
and 90% with MLRU policy.

In order to understand the above results, we next look at
the frequency of access to the different data types and the
hit ratio for each data type as a result. The data type ac-
cess frequency is shown in Table 1. From the 64-bit data
shown, we find that the access to integers dominates the

��������	
���
���	�����
�����
����������

���

����

���

����

���

����

�

�� �� ��

1XPEHU RI 7DEOH (QWULHV �1�

(
Q
F
R
G
LQ
J
7
D
E
OH

+
LW
)
UD
F
WL
R
Q

% �

% ��

% ��

% ��

% ��

Figure 2: SPECweb99 Addr Compression: Varying Block Size, Table Size

��������	
���
���	�����
�����
������

���

����

���

����

���

����

�

�� �� ��

1XPEHU RI 7DEOH (QWULHV �1�

(
Q
F
R
G
LQ
J
7
D
E
OH

+
LW
)
UD
F
WL
R
Q

% �

% ��

% ��

% ��

% ��

Figure 3: TPC-C (32-bit) Addr Compression: Varying
Block Size, Varying Table Size

��������	
���
��

���

����

���

����

���

����

���

����

�

�� �� ��� ��� ���

1XPEHU RI 7DEOH (QWULHV �1�

+
LW
5
D
WH

),)2

0/58

Figure 4: TPC-C (64-bit) Addr Compression: Varying
Table Size, Replacement Policy

��������	
���
�������

���

����

���

����

���

����

���

����

���

�� ��� ��� ��� ����

1XPEHU RI 7DEOH (QWULHV �1�

+
LW
5
D
WL
R

),)2

0/58

Figure 5: TPC-C (32-bit) Data Compression: Varying
Table Size, Replacement Policy

��������	
���
��

���

����

���

����

���

����

���

����

�

�� ��� ��� ��� ����

1XPEHU RI 7DEOH (QWULHV �1�

+
LW
5
D
WH

),)2

0/58

Figure 6: TPC-C (64-bit) Data Compression: Varying
Table Size, Replacement Policy

��
��
���������������������	�

�

���

���

���

���

�

���

�� ��� ��� ��� ����

1XPEUH RI 7DEOH (QWULHV

+
LW
5
D
WH

,QWHJHU

3RLQWHU

7H[W

'RXEOH

,QVWUXFWLRQ

Figure 7: TPC-C (32-bit) Data Type Specific Hit Rates

�������	���
������

�

���

���

���

���

���

���

���

���

���

�

�� ��� ��� ��� ����

1XPEHU RI 7DEOH (QWULHV �1�

+
LW
5
D
WH

,QWHJHU 3RLQWHU

7H[W 'RXEOH

Figure 8: TPC-C (64-bit) Data Type Specific Hit Rates

Data Type 32-bit systems 64-bit systems
Integers 61.43% 91.35%
Pointers 19.80% 1.98%

Text 13.33% 6.50%
Double 0.34% 0.18%

Instruction 5.10% NA

Table 1: Data Type Access Frequencies in TPC-C

hit ratio obtained. From the 32-bit data shown, we observe
that the most frequently accessed data type in TPC-C is
integers (with 62% access probability) and the least fre-
quently accessed data type is double (with 0.34% access
probability). Figures 7& 8 show the hit ratio for each data
type. It is seen that integers have very substantial locality
(and hence hit ratios), pointers have a reasonable locality,
and code/double have the least amount of locality.

From Figure 7 it is clear that while pointer data type is
the second most frequently accessed, its hit ratio is sign-
ficantly lower than the integer hit ratio. We hypothesize
that the main reason for the low hit ratio in 32-bit systems
is that the top 16 bits of pointers still have quite a bit of
entropy. In the 64-bit case, Figure 8 shows that pointer
data type also provides a good hit ratio; although in the
considered case, the percentage of pointer references is
rather small, which means that the overall performance is
dominated by the integer hit ratios. As other 64-bit traces
become available, we plan to do further analysis and see
if the good data hit ratio obtained for this trace persists.

Although the address/data bus compression schemes
appear suited only for data transmission over a bus/link,
they are really no different from the compression schemes
used for storage. The encoded data retains all the infor-
mation needed for reconstructing the encoding table and
decoding the data (except for the static parameters such
as the table size, which can be remembered elsewhere).
It is crucial, however, that the information be decoded in
the same order as it was encoded. This is not an issue
with bus transfer; in other contexts, this property can be

enforced by dividing data into blocks so that each block
is handled separately and involves a separate encoding ta-
ble. Obviously, small block sizes will result in very little
compression in general.

6 Summary and Future Work

In this paper, we evaluated the compressibility of ad-
dress and data transfers in commercial servers. We started
by presenting the basic premise behind simple compres-
sion schemes that use encoding/decoding tables. We
showed that address transfers in web servers as well as
OLTP servers show signficant potential for compressibil-
ity (from 85 to 90% hit ratio) for a reasonable table size
(64 entries). We also showed that data transfers in 32-
bit systems show only moderate potential (roughly 75%)
even for a reasonable table size (256 entries). We also
showed that we can increase this compressibility poten-
tial by improving the replacement policy (MLRU) and by
using data type specific optimizations.

In the future, we would like to explore this technique
by delving into the implementation issues (set-associative
tables, bus protocol issues) and associated performance
evaluation. We would also like to incorporate the hit
ratio data into a system-level performance model in or-
der to evaluate the overall performance impact for com-
mercial workloads. We would also like to expand our
current suite of commercial workloads by including in-
teger/floating point workloads (SPEC2000), JAVA work-
loads (SPECjbb) and e-commerce workloads (TPC-W).

References

[1] B. Abali, H. Franke, S. Xiaowei, et.al., “Performance of
hardware compressed main memory”, The Seventh Inter-
national Symposium on High-Performance Computer Ar-
chitecture, 2001, (HPCA2001), pp. 73 -81

[2] L. Barroso, et al. ”Memory System Characterization of
Commercial Workloads”, Proceedings of the 25th Annual

International Symposium on Computer Architecture, pp3-
14, June 1998.

[3] D. Citron and L. Rudolph, “Creating a wider bus using
caching techniques”, Proc of first Intl symposium on high
performance computer architecture, Jan 1995, pp 90-99.

[4] D.J. Craft, “A fast hardware data compression algorithm
and some algorithmic extensions”, IBM Journal of R&D,
Vol 42, No 6.

[5] J. Ernst, W. Evans, et. al., “Code compression”, Proc of
1997 SIGPLAN Conf. on Programming Language Design
and Implementation, June 1997.

[6] M. Farrens and A. Park, “Dynamic base register caching:
a technique for reducing address bus width”, Proc. of 18th
annual Intl. symposium on computer architecture, May
1991, pp 128-137.

[7] B.R. Iyer and D. Wilhite, “Data compression support in
databases”, Proc of 20th VLDB conference, Santiago,
Chile, 1994, pp. 695-703.

[8] R. Iyer, ”Exploring the Cache Design Space for Web
Servers,” Invited Paper, International Parallel and Dis-
tributed Processing Symposium (IPDPS’01), May 2001.

[9] R. Iyer, ”Performance Implications of Chipset Caches in
Web Servers,” submitted to an international conference,
Oct 2001.

[10] R. Iyer, et al., ”A Trace-driven Analysis of Sharing Behav-
ior in TPC-C”, 2nd Workshop on Computer Architecture
Evaluation using Commercial Workloads, 1999.

[11] D. Kirovski, J. Kin, W.H. Mangione-Smith, “Procedure
based program compression”, Proceedings of 30th annual
IEEE/ACM International Symposium on Microarchitec-
ture, 1997, pp. 204 -213

[12] M. Kjelso, M. Gooch, S. Jones, “Empirical study of
memory-data: characteristics and compressibility”, IEE
Proceedings on Computers and Digital Techniques, Vol
145, No 1, Jan. 1998, pp. 63 -67

[13] M. Kjelso, M. Gooch, S. Jones, “ Design and perfor-
mance of a main memory hardware data compressor”,
Proceedings of the 22nd EUROMICRO Conference, Be-
yond 2000: Hardware and Software Design Strategies,
1995, pp. 423 -430

[14] Jang-Soo Lee, Won-Kee Hong, Shin-Dug Kim, “An on-
chip cache compression technique to reduce decompres-
sion overhead and design complexity”, Journal of systems
Architecture, Vol 46, 2000, pp 1365-1382.

[15] C. Lefurgy, E. Piccininni, T. Mudge, “Evaluation of a
high performance code compression method”, Proceed-
ings. 32nd Annual International Symposium on Microar-
chitecture, 1999, MICRO-32, pp. 93 -102

[16] H. Lekatsas and W. Wolf, “Code compression for embed-
ded systems”, Proc. 35th design automation conf., 1998.

[17] P. Mohapatra, H. Thanthry and K. Kant, ”Characteriza-
tion of Bus Transactions for SPECweb96 Benchmark,”
2nd Workshop on Workload Characterization (WWC),
Oct 1999.

[18] P. Ranganathan, K. Gharachorloo, et al., “Performance
of Database Workloads on Shared Memory Systems with
Out-of-Order Processors,” Proceedings of the Eighth In-
ternational Conference on Architecture Support for Pro-
gramming Languages and Operating Systems, Oct. 1998.

[19] S. Roy, R. Kumar, M. Prvulovic, “Improving system per-
formance with compressed memory”, Proceedings 15th
International Parallel and Distributed Processing Sympo-
sium, Apr 2001, pp. 630 -636

[20] K. Sayood, Introduction to Data Compression, 2nd edi-
tion, Morgan Kaufmann, 2000, chapter 5.

[21] ”SPECweb99 Design Document,” avail-
able online on the SPEC website at
http://www.specbench.org/osg/web99/docs/whitepaper.html

[22] Transaction Processing Performance Council, TPC
BENCHMARKTM C Standard Specification,
http://www.tpc.org/, Jan. 2000.

[23] R.B. Tremaine, T.B. Smith, et. al., “Pinnacle: IBM MXT
in a memory controller chip”, IEEE Micro, March-April
2001, pp 56-68.

[24] U. Vallamsetty, P. Mohapatra, R. Iyer and K. Kant, ”Im-
proving the cache performance of network intensive work-
loads”, Proceedings of the International Conference on
Parallel Processing, 2001.

[25] T.A. Welch, “A technique for high-performance data com-
pression”, IEEE Computer, pp 8-19, June 1984.

[26] P.R. Wilson, S.F. Kaplan and Y. Smaragdakis, “The case
for compressed cache in virtual memory systems”, Proc.
USENIX 1999.

[27] Jun Yang, Youtao Zhang, R. Gupta, “Frequent value com-
pression in data caches”, Proc. of 33rd annual IEEE/ACM
Intl Symposium on Microarchitecture, 2000. MICRO-33,
2000, pp. 258 -265

[28] J. Ziv and A. Lempel, “A universal algorithm for data
compression”, IEEE trans. on information theory, Vol IT-
23, No 3, pp 337-343, May 1977.

 1

Performance Workloads in a Hardware Multi Threaded Environment

Bret Olszewski Octavian F. Herescu

IBM Corp.
Austin, TX

Abstract
This paper describes the benefits of hardware

multithreading (HMT) on IBM’s eserver Pseries systems

on commercial workloads. The HMT mechanism takes

advantage of today’s considerable gap between the speed

of the processor and memory to increase throughput by

overlapping memory fetches with computation. We

analyze the performance improvement by measuring 5

commercial benchmarks: SDET, Netperf, OLTP,

Websphere and SFS, which were run using the same

hardware configuration with and without HMT enabled.

We also discuss the characterization of this technique

compared to single-threaded processors and determine

that by enabling HMT, the throughput improvement is in

the range of 10-20%, confirmed by the CPI

measurements. Using the hardware performance monitor

we study many other hardware counters that factored into

the improvement, including HMT specific ones.

1 Introduction

System design trends have in recent years

concentrated on increasing instruction level

parallelism (ILP). Highly superscalar designs,

when coupled with aggressive memory prefetching

mechanisms, have proved highly effective in integer

and floating point applications. However, ILP gains

in large footprint commercial codes have been

virtually stalled.

According to Moore’s Law, the processor’s speed

doubles every 18 months. That has held true for the

last 36 years. Unfortunately, the speed of the

memory system has not increased at the same rate.

The main improvements of the memory components

have been in density and manufacturability and not

in performance. This has resulted in increased

amount of memory per system at reduced cost. But

each new generation of technology makes the

latency to memory become a greater factor and that

has led to increasingly complex system structures to

maximize overall hardware performance.

One method to improve system performance is to

overlap memory accesses with other instructions.

This can and has been done in a number of

mechanisms. The object of this paper is a

mechanism called hardware multithreading (HMT).

2 Hardware Multithreading

HMT is a technique for tolerating memory latency

by utilizing cycles in the CPU that normally would

be stalled waiting on memory accesses [1]. On a

system, such as the server Pseries 660 6M1, that

contains relatively large on chip L1 caches and a

large L2 cache, the ratio of loads and stores to

memory accesses is reduced to less than one hundred

to one. This number is still high because it means

 2

that the processor spends an average of about 1.0

cycles of waiting on memory for each instruction

running commercial workloads. Figure 1 shows an

estimate of the time the CPU stays stalled.

Considering that the system used in this paper uses

an RS64-IV processor, which can execute up to four

instructions per cycle, the time spent waiting for

memory is far more than the time the instruction

spends in the processor.

Memory Misses
Processor Execution

Figure 1 - CPI breakdown for uniprocessor

Hardware multithreading provides a mechanism for

improving the overall system throughput by

overlapping memory accesses with the execution of

other instructions. This means that there will be

multiple “active” threads per processor, which

requires the replication of the processor-architected

registers for each thread.

Cost savings, when compared to adding another

physical processor, exist because replication is not

required for the majority of the processor logic, such

as: instruction cache, data cache, TLB, instruction

fetch and dispatch mechanisms, branch units, fixed-

point units, floating-point units and storage-control

units.

The sharing of so many units can take its toll on the

performance of some workloads, one of which will

be described in this paper. The RS64-IV processor

has two contexts per physical processor. At any

processor clock, only one of the logical processors

(contexts) can have instructions in the execution

pipeline. The other context is inactive. See Figure 2.

The physical processor switches between the

contexts at a fairly rapid rate giving the software the

impression that it is dealing with two distinct

processors. The fact that the processor used as an

example in this paper has a four-stage pipeline

allows a thread switch penalty of only three cycles.

2-way HMT

Ready Execute Done

Execution Unit
Thread 1

Thread 2

Thread 1 only

Thread 1

Thread 2

 or
Thread 2 only

Figure 2 - HMT Only one thread active at any time

One of the requirements to make this method

efficient and to achieve the improved performance is

that the switch time between threads must be shorter

than the latency of the event that triggered the

switch. In our implementation the minimum penalty

for an L1 miss is nine cycles. The thread switch

penalty is only three cycles. Figure 3 shows the

switch timing for a L1 cache miss with an L2 cache

hit. The thread switch penalty and the penalty for

 3

TLB misses or instructions cache misses are

comparable. As mentioned above, the processor

switches between threads on selected events. The

mechanisms to switch between contexts are

controlled by the operating system and the events are

selected by the thread switch control register (TSC).

Three basic classes of switch events have been

defined:

?? hardware events (cache misses and virtual

memory translation misses).

?? software hints (software is allowed to have

different priorities assigned to the logical

processors).

?? time out (one logical processor cannot starve

the other).

 T1

 T2

 T1

 T2

 Processor Execution Time
 L1 Cache Miss Time
 Thread Switch Time

 L2 Cache Miss Time

No Multi Threading

Switch Threads on L2 Miss

Figure 3 - Switching Penalty

The two logical processors may have different

priorities. If the first thread on a processor is busy,

the second will wait for an event that will trigger a

logical processor switch. Hardware events are the

main triggers of switching between the two logical

processors. One of the most frequent causes for a

switch is a cache miss. A cache miss occurs when

the active thread executes a load, store, or instruction

fetch and the referenced data is not found in the

cache. The cache miss causes the processor to switch

to the other thread. The thread that was waiting on

the secondary logical processor can now execute.

But usually the execution is interrupted when the

data needed by the first processor becomes available.

The most unfortunate case is when the second thread

also has to wait for data from memory. A switch can

also occur when the hardware priority of the logical

processors changes. We mentioned that each logical

processor has its own hardware priority. Normally

the hardware priority is 2 (medium priority) but

software may switch the priority to a higher value (3

for example) using the or r3,r3,r3 noop or to a lower

priority using the or r1,r1,r1 noop command. The

hardware will switch immediately between threads

when the priority is changed. The high priority

noop can only be used in kernel mode.

To avoid starvation, one more event that can trigger

a switch was introduced: time out. The hardware

maintains a clock counting the number of cycles that

the current thread has been executing. When the

time out is exceeded, the hardware will switch to

avoid thread starvation.

The HMT mechanism is particularly appropriate for

the RS64 microprocessor. The logic overhead

required to implement HMT is less than 10% of the

chip size. The cost in cycle time to implement HMT

is also small, less than 10%. A much more deeply

pipelined processor could not so efficiently switch

between threads due to its more complex state. On

deeply pipelined processors, it is expected that

simultaneous multi-threading (SMT), a mechanism

 4

where multiple threads execute instructions at the

same time, will prove the preferred solution. See

Figure 4. SMT combines HMT with superscalar

processor technology and allows multiple threads to

issue instructions each cycle [3].

2-way SMP

Ready Execute Done

Execution Unit Proc0

Thread 1

Thread 2

Thread 1

Execution Unit Proc1

Thread 2

Thread 1

Thread 2

Figure 4 - SMT Two threads could be active at any time

3 AIX changes to implement HMT support

The first AIX version that supported HMT was

4.3.3. The HMT capabilities of AIX may be enabled

or disabled by the bosdebug command followed by

the bosboot command. The new mode will only be

activated after a reboot. When HMT is fully enabled,

the OS will see the system as having twice the

number of processors; though the software which

reports hardware configuration (e.g. lscfg) will

report the number of physical processors. It is

important to note that, unlike chips with independent

cores [2], a hardware failure in the CPU core will

disable both logical processors. Though the number

of logical processors is doubled, each processor will

typically have the performance of a little more than

one half of the non-HMT processor.

 There were very few changes required within AIX

to support HMT. These changes were implemented

in system initialization, dispatching, idle process,

and locking. The system initialization changes

include modifications to enable the second logical

processor, which required changes to start the

secondary threads. Also, all the areas in the kernel

that have to be aware of the difference between the

real number of physical processors and the number

of logical processors, were modified. For example,

the operating system allocates only one set of mbuffs

per physical processor saving memory.

By executing the command netstat -m the user will

only see mbuffs for processors with even numbers:

0, 2, 4, etc. The operating system was modified to

use software hints for low priority operations like

the idle loop and lock spinning. Since HMT gives

software the illusion of two logical processors per

physical processor, each logical processor has

operating system process management resources.

This includes an idle thread per logical processor.

The idle thread is optimized to run at a low hardware

priority. This optimizes performance at low CPU

utilization: if one logical processor is idle, the full

resources of the physical processor are available to

the other logical processor. Additionally, the areas

associated with locking were modified. Every time

the active thread aquires a kernel lock, the hardware

thread priority is increased to high. When the lock is

released, the priority is switched back to medium.

This optimizes the cross section of critical code.

Another performance improvement comes from the

optimization to adjust hardware priority to low for

code spinning on locks. This effectively yields the

physical processor to the alternate thread. These two

 5

changes tend to improve overall throughput because

the cpu is kept busy during otherwise idle cycles.

The current hardware implementation restricts that

external I/O interrupts are presented on only one

logical processor per physical processor. This

characteristic could affect some specific workloads,

which will be detailed in the next chapters. The

usage of thread priority software hints allows AIX to

ensure that sufficient resources are available to

service interrupts thus minimizing the shortcomings

of the above asymmetric characteristics.

4 Performance Workloads

While quite a number of benchmarks have shown

improvements when running over HMT enabled

systems, in this paper we will present only a few

representative workloads and describe the kind of

benefits they get from HMT.

I. SPEC SDM SDET - Software Development

Environment Throughput, is a benchmark that

simulates a multiuser environment in which the

users are executing randomly ordered scripts;

basically, sets of AIX commands in shell scripts.

One of the main reasons we chose this workload is

that this benchmark stresses three main components

of an Operating System: file management, processor

management and the virtual memory manager. Over

the years since SDET's first release, it has become

clear that the benchmark's primary use has not been

in evaluating how many work units a system

performs per time, but how well a system responds

under stress, and whether a set of operating system

modifications will result in performance

improvements.

II. Netperf - is a benchmark that can be used to

measure various aspects of networking performance.

Currently, its focus is on bulk data transfer

(streaming) and request/response performance using

either TCP, UDP, or the Berkeley Sockets interface.

While this benchmark is now part of the public

domain, IBM has developed a derivative tool which

is more tightly integrated with the capabilities of the

AIX operating system.

III. Online transaction processing workload (OLTP)

simulates a complete computing environment, where

a population of users executes transactions against a

commercially available 64-bit database. The

benchmark is centered around the principal activities

(transactions) of an order-entry environment. This

workload has the largest memory-footprint as well

as executable size of the commonly executed

performance workloads.

IV. Websphere eBusiness Benchmark - is an IBM

internal benchmark used to evaluate performance

using the IBM Websphere Application Server

software product. The benchmark emulates the

operation of an online brokerage firm. One or more

network attached HTTP clients drive a server

running servlets which use Enterprise Java Beans

(EJBs) that service requests and access a relational

database. The benchmark thus exercises the

operating system using HTTP services, Java, and a

relational database.

V. SPEC SFS97_R1 V3.0 - is a standard benchmark

for evaluating the performance of a Network File

System (NFS) file server. The variant used in this

benchmark measures the NFS version 3 protocol

over UDP. One or more clients drive a mix of

 6

operations to a file server. The benchmark requires

a large disk and network configuration to reach peak

performance.

All of the above benchmarks were run on an

RS/6000 model pSeries 660 6M1 with 8 processors

running at 750 MHz, IBM SSA disks and varying

amounts of RAM. The workloads are quite

different in their consumption of CPU time

resources. Table 1 shows that the workloads are all

CPU limited in the configurations used for this

paper. The large amount of CPU time consumed in

the operating system for netperf and sdet, which are

used as operating system tests, is a marked

difference from the more real-world OLTP and

Websphere benchmarks. The NFS protocol is

optimized to execute within the AIX kernel context,

thus all execution time is system.

Workload %User %System %I/O
Wait

%Idle

Sdet 33 65 1 2
Netperf 1 99 0 0
OLTP 85 15 0 0
Websphere 66 33 0 0
SFS 0 98 2 0

Table 1 - non-HMT CPU Time

5 Hardware Measures

To facilitate an understanding of the benefits and

effects of HMT on system performance, the

aforementioned workloads were evaluated with

HMT both enabled and disabled. The most

important metric defining the benefit of HMT is the

increase in workload throughput obtained while

using it. Chart 1 shows that the improvement

observed is typically on the order of 10% to 20% for

these workloads. The improvement in throughput is

directly related to the increase in instructions

executed per unit time by the processors. This metric

is typically defined as the cycles per instruction, or

CPI.

% improvement

0 5 10 15 20 25

SFS

Websphere

OLTP

Netperf

Sdet

Chart 1 - Throughput Improvement with HMT

The hardware performance monitor can be used to

assess the efficiency of the microprocessors with and

without HMT enabled. There are a single set of

hardware counters when HMT is enabled. The

counters can be directed to count events for one or

both hardware threads of execution for each physical

processor, which allows us to directly count the total

number of instructions executed by both hardware

threads over a known number of cycles. The

implementation of two threads sharing cache and

translation resources would be expected to increase

the frequency of cache misses. Since the L1

instruction and data caches as well as the TLB

(translation look-a-side buffers) are relatively

smaller than the L2 caches, they should see a larger

increase in miss rates. As expected, the CPI with

HMT enabled is lower, allowing higher throughput.

This relative improvement in CPI is shown in Chart

2. Note that the improvements in CPI do not always

scale linearly with throughput. This is due to

 7

software efficiency as well as slight changes in the

amount of idle time in the workload.

% improvement

0 10 20 30 40 50

SFS

Websphere

OLTP

Netperf

Sdet

Chart 2 - CPI Improvement with HMT

Chart 3 shows the increase in instruction TLB

(ITLB) miss rates with HMT. It would be expected

that the largest increases would be in workloads with

a multiple executables or very large executables.

% increase

0 10 20 30 40

SFS

Websphere

OLTP

Netperf

Sdet

Chart 3 - Increase in ITLB per inst with HMT

This proves true for Sdet and OLTP, but the small

increase in Websphere is surprising given its mix of

large sized executables. As expected, netperf sees

the smallest increase in ITLB miss rates, as the

workload is dominated by kernel activity and a

single small executable.

Chart 4 shows the increase in data translation

lookaside (DTLB) misses per instruction with HMT.

In this metric, the OLTP workload with its enormous

data footprint and high multiprogramming level sees

the greatest increase in DTLB misses.

% increase

0 10 20 30 40 50

SFS

Websphere

OLTP

Netperf

Sdet

Chart 4 - Increase in DTLB per inst with HMT

The netperf workload, with a number of processes

with small but essentially identical process address

spaces, is penalized for aliasing of those addresses

within the DTLB.

Chart 5 shows the increase in level-one instruction

cache misses (IL1) with HMT. The increase in the

IL1 cache miss rate for Netperf is somewhat

misleading, as the absolute miss rates in each case

are fairly low. This particular workload has a small

instruction cache footprint. The increase in IL1 miss

rate for Sdet is expected, as a large number of

different executables are context switching within

the shared IL1 cache with HMT. The increase

observed in SFS has not been explained. Since the

executable code is shared by all of the software

threads, it is odd that instruction cache miss rate

increases so greatly.

 8

% increase

0 25 50 75 100

SFS

Websphere

OLTP

Netperf

Sdet

Chart 5 - Increase in IL1 per inst with HMT

Chart 6 shows the increase in level-one data cache

misses (DL1) with HMT. Once again, the OLTP

workload suffers the greatest increases with HMT

for reasons sited with it’s DTLB miss rate. While

the change in L1 miss rates are not typically crucial

in performance for commercial workloads, a

exception has been consistently observed running

the SPEC CPU2000 SPECint_rate2000 workload.

This workload runs multiple copies of the exact

same programs in lockstep, which tends to result in

extreme thrashing of the L1 data cache. On this

workload, we consistently see a decrease in

performance using HMT. While cache thrashing is

fairly unlikely in complex environments, it may

appear on systems with low multi-programming

levels and long running jobs. The increase in miss

rates for L1 caches and translation is indeed

important, but the effect on the L2 is usually much

greater due to memory latencies. Chart 7 shows in

the studied benchmarks the increase is much lower

on L2 miss rates due to the large size of the L2

caches on the system used. The decrease in L2 miss

rate for Websphere is due to an actual decrease in

the L2 misses resolved from another L2 cache.

% increase

0 10 20 30 40

SFS

Websphere

OLTP

Netperf

Sdet

Chart 6 - Increase in DL1 p er inst with HMT

This is actually a benefit of HMT sharing L2 cache

between two logical processors. The reason we see

a decrease in the L2 cache misses ratio for netperf is

that while the actual number of misses increased, the

ratio miss/instructions decreased because the

machine has more idle cycles.

% increase

-5 0 5 10 15 20

SFS

Websphere

OLTP

Netperf

Sdet

Chart 7 - Increase in L2 miss rates with HMT

We used the same workload for netperf as in the

non-HMT case, but with HMT the system will be

less utilized showing significant scaled throughput

due to the increase in the number of CPUs . This

somehow abnormal behavior is detailed in section 7.

Though obvious, we must mention that adding HMT

cannot improve performance if memory bandwidth

 9

becomes constrained. Experiments on systems with

bandwidth limitations have show very small gains in

throughput. Another less studied issue is the effect

on L2 miss rates with smaller L2 caches. There was

concern that large footprint caches, such as OLTP,

with very large instruction cache footprints, would

scale poorly due to L2 cache thrashing. We were

able to do some measurements on a one-processor

660 6F1 system using the OLTP workload. This

system configuration has only a 2MB L2. The

results of this measurement showed that the increase

in L2 miss rates with a 2MB L2 were consistent with

those observed on systems with 8MB L2 caches. A

determination of miss rate increases below this size

is difficult, as the 2MB L2 is still more than large

enough to fully contain the instruction footprint.

Since the instruction footprint is the most cacheable

part of the workload, it seems likely the L2 miss rate

increase will be larger with smaller caches.

6 HMT Specific Metrics

The hardware performance monitor also permits

analysis of the HMT mechanism. These metrics

provide a glimpse of how often there is switching

between hardware threads as well as the causes of

these switches. The rate of switching is a factor of

cache and translation miss rates, software hints, and

time-outs. Chart 8 shows the average number of

instructions between switches for the workloads.

The hardware instrumentation also provides for

counting the HMT thread switches, by the cause of

the switch. Charts 9,10,11,12, and 13 show the

distribution of causes of most thread switch events

for the three workloads.

0 5 10 15 20 25 30 35

SFS

Websphere

OLTP

Netperf

Sdet

Chart 8 - Average instructions between switches

A few other thread switch cases, such as switch for

L2 instruction miss, occur but are extremely

infrequent.

0 0.25 0.5

or 1,1,1 low pri
Time out
Priority
L2 store
L2 load
TLB/SLB
IERAT
L1 instruction
L1 store
L1 load

Chart 9 - Sdet HMT Fraction Switches

AIX configures the hardware to switch on all

possible events. There are some circumstances when

an L1 cache miss does not result in an immediate

switch, which means the L2 switch events are not a

subset of the L1 switch events.

A large fraction of switches are caused by the thread

switch time-out. This time-out is set to a

conservative value of 64 cycles. This value was

selected to improve responsiveness for interrupt

processing for high speed I/O adapters.

 10

0 0.25 0.5

or 1,1,1 low pri
Time out
Priority
L2 store
L2 load
TLB/SLB
IERAT
L1 instruction
L1 store
L1 load

Chart 10 - Netperf HMT Fraction Switches

0 0.25 0.5

or 1,1,1 low pri
Time out
Priority
L2 store
L2 load
TLB/SLB
IERAT
L1 instruction
L1 store
L1 load

Chart 11 - OLTP HMT Fraction Switches

A higher value of time-out would improve

throughput, though at the cost of responsiveness.

The or 1,1,1 noop instruction switches are typically

the result of the idle process or lock spin switches

for low priority.

7 Performance Tradeoffs

The nature of HMT performance enhancements

assumes highly multi-programming workloads

(meanning when a task is waiting another one is

running). AIX’s implementation of HMT attempts to

provide fairness between the threads that are

executing. While this balance is very effective for

transactional environments, it is not optimal for

single threads that need to execute and complete in

the shortest amount of time.

0 0.25 0.5

or 1,1,1 low pri
Time out
Priority
L2 store
L2 load
TLB/SLB
IERAT
L1 instruction
L1 store
L1 load

Chart 12 - Websphere HMT Fraction Switches

0 0.25 0.5

or 1,1,1 low pri
Time out
Priority
L2 store
L2 load
TLB/SLB
IERAT
L1 instruction
L1 store
L1 load

Chart 13 - SFS HMT Fraction Switches

No circumstances will allow a thread to have a

shorter execution time in an HMT enabled

environment. Let’s assume that there is only one

thread that executes on a system that supports HMT.

Whenever there is a cache miss, the system will

switch to the other logical processor until the data

for the miss becomes available. That means that

there are two switches and each introduces a 3-4

processor cycles penalty. Had the system not

switched, the running thread would not have been

penalized. We saw the penalty in the time, using a

business intelligence workload which measured the

 11

run time per query. While the throughput increased

when the queries were run in parallel, the time to run

individual queries in isolation increased in a range

from 2% to 20%. Since all the benchmarks we

discuss in this paper ran for a predefined amount of

time, this shortcoming of HMT could not be

quantified. It is important to understand the type of

workload that a system is most likely to handle and

based on that, make a decision whether it is

beneficial to enable HMT on the system. Thus, the

benefits of HMT for highly transactional, highly

multi-programming works must be weighted against

the drawbacks for time-critical tasks.

Another side effect of HMT is a consequence of

sharing the physical resources of one processor

between the two logical processors. And that is an

increase in variability in elapsed and CPU time to

complete a task. AIX treats the two logical

processors as equals and that means that the amount

of resources available to one processor can, and is,

affected by what is running on the other one. When

HMT is fully enabled AIX behaves as if the system

has doubled its number of processors. This increase

could create scalability problems. Resource sharing

also poses a challenge to the CPU monitorization

tools. AIX determines the CPU utilization using a

common sampling technique querying the tasks

running on each processor 100 times per second.

This implementation has each processor taking clock

interrupts on average each 10 milliseconds. The

hardware supports two mechanisms, one allowing

the two logical processors to take clock interrupts in

absolute time, the other to take them proportional to

their execution time. Clearly, having 100 clock

interrupts per second delivered proportionally to the

two logical processors would improve the accuracy

of CPU utilization, since the logical processors may

proceed at different rates. But many tools assume,

based on constants in header files, absolute clock

tick counts. Thus AIX maintains its original

behavior of each processor taking 100 clock

interrupts per second. Note here that this problem

will need to be resolved if, as in the mainframe

world, multiple operating instances coexist on a

physical processor (e.g. shared processor partitions).

The problem with constant rate sampling is the

capacity implied by the CPU utilization. In essence,

if the system is 50% busy and performs a certain

number of tasks per second, one may assume that

approximately twice as many tasks per second can

run on the system before the CPU is totally

consumed. The above assumption does not take into

consideration the other factors in scaling a workload:

memory, I/O bandwidth, or workload scalability.

When HMT is enabled on the system, with the

sampling technique, the Operating System will

sample both logical processors every 1/100th of a

second. If only one thread is running on the system

at a certain time, and it blocks for a cache miss, the

system will switch to the other processor, which will

be idle since there is only one thread executing in the

system. The operating system will record the elapsed

time on this processor as idle time. If another thread

is running on the system, does the throughput

increase linearly with the idle time that was

previously observed? The answer is: not necessarily,

since both threads could end up blocked on cache

misses from time to time.

 12

The way Netperf reports the system utilization is by

averaging the CPU utilization of all the CPU’s that

the system detects. With HMT enable d, there will be

twice as many processors available. When using

Netperf , we used the same workload on both cases

HMT and nonHMT. In the nonHMT case the

workload used would make the CPU utilization be

100%. Using the same workload with HMT the CPU

monitoring tool would report the CPU’s as only 93%

busy in average. There is no guarantee that even if

there were no other constraints, like memory or I/O

bandwidth, the system would be able to do 7% more

work, which implies the CPU utilization observed

with HMT is somewhat less precise as a measure of

available capacity. So, if a certain workload requires

a highly accurate CPU utilization, HMT is not

recommended. In the case of Netperf, measurements

showed that even if the workload was increased the

throughput did not increase. In fact the throughput

decreased while the CPU reached 100%.

8 Conclusions

Our analysis has shown performance gains of ten to

twenty percent, on different types of workloads with

high multi-programming levels are possible. It is

important to understand that the gains are very much

dependent on the type of the user’s workload. Issues

with the performance of long running critical tasks,

workload scalability, cache thrashing and CPU

utilization should be taken in consideration and

quantified in order to determine the applicability of

HMT in a specific user environment.

For future work we think that improvements could

be done in both hardware and software by keeping

these two goals in mind:

1) We need to have hardware that has a low

switching cost, since that is the major overhead, and

2) To be able to provide good single -thread

performance, therefore allowing applications with

low parallelism to execute efficiently.

References

[1] J. Borkenhagen, R. Eickemeyer, and R. Kalla :A

Multithreaded PowerPC Processor for Commercial

Servers, IBM Journal of Research and Development,

November 2000, Vol. 44, No. 6, pp. 885-98.

[2] Gulati, M., Bagherzadeh, N.: Performance Study of a

Multithreaded Superscalar Microprocessor. 2nd Int.

Symp. On High Performance Computer Architectures,

February 1996, 291-301

[3] Susan Eggers , Joel Emer, Henry Levy, Jack Lo,

Rebecca Stamm, and Dean Tullsen, IEEE Micro ,

September / October 1997, pages 12-18

Acknowledgements

Jim Van Fleet, Mysore Srinivas and Greg Mewhinney for

their earlier work on HMT on AIX.

Steve Kunkel for RS64 hardware help.

Augie Mena, Sujatha Kashyap, Qunying Gao and

Anthony Garcia for helping us collect the data.

Trademarks

SPEC, SPEC SFS97_R1, SPEC SDM SDET, SPEC

CPU2000 SPECint_rate2000 are trademarks of Standard

Performance Evaluation Corporation.

IBM, AIX, RS/6000, and Websphere are a trademark of

International Business Machines.

ten-

h
re
nd
f

to
m
on
ce

].
n
a-
ly
d

-
ith
ly
ss.
nts
-

to
e-

or
r-
or
n

P
n
rs
n

n
e
-
the
-

A Processor Queuing Simulation Model
for Multiprocessor System Performance Analysis

Thin-Fong Tsuei and Wayne Yamamoto

Sun Microsystems, Inc.
{thin-fong.tsuei,wayne.yamamoto}@sun.com
Abstract

This paper describes a processor queueing
simulation model for a complex processor that
aggressively issues instructions with the use of out-
of-order, multiple issue and multithreading. The
model is developed for memory and system evalua-
tion of memory-intensive commercial OLTP (On-
line Transaction Processing) workloads on large
multiprocessor systems. Our approach differs from
detailed cycle accurate and direct-execution simu-
lations in that we do not simulate instruction exe-
cution. Instead, we take a high level view, as in
analytical models, and model a minimal set of pro-
cessor components to accurately generate the
memory access traffic for system simulation. The
model is validated with a cycle accurate simulator
and is within 5% accuracy. Results on the effect of
store burstiness and memory latencies on overlap-
ping of cache misses and buffer sizing are pre-
sented.

1. Introduction
The performance requirements of many

commercial applications can only be met with
large, complex multiprocessor systems. Modeling
and performance analysis for large systems are
becoming increasingly important. With processors
becoming more complex through the use of out-of-
order multiple issue, multithreading, and chip mul-
tiprocessing, multiprocessor system models based
on simple processor models no longer accurately
represent the memory access workload to other
system components. In particular, simple serial
issue, block-on-cache-miss processor models can-
not capture the characteristics of overlapping cache

misses and processor stalls due to resource con
tion.

Cycle accurate processor simulators whic
simulate the micro-architecture of processors a
essential and commonly used for research a
design of processors [5]. However, this type o
model, while accurate, is too complex and slow
be used effectively in large multiprocessor syste
models. Techniques based on direct-executi
were developed to speedup execution and redu
complexity in processor simulations [2,3,4,8
Since direct-execution simulation runs applicatio
code directly on a host machine, it may not be fe
sible for commercial applications that can easi
require configurations of gigabytes of memory an
disk space.

In analytical multiprocessor models, pro
cessors are generally modeled as a blackbox w
emphasis on defining parameters that effective
characterizing the memory access arrival proce
Parameter values are derived from measureme
on existing system or obtained from other simula
tions. Very often, synthetic workloads are used
stress the system components to identify bottl
necks.

In this paper, we describe a process
queueing model for multiprocessor system perfo
mance analysis. The purpose of this process
model is for memory hierarchy and system desig
evaluation of memory-intensive commercial OLT
(On-line Transaction Processing) workloads o
large multiprocessor systems. Our approach diffe
from detailed cycle accurate and direct-executio
simulations in that we do not simulate instructio
execution. Instead, as in analytical models, w
view the function of a processor model is to pro
vide the interactions between the processor and
rest of the system. We model a minimal set of proSun, Sun Microsystems, and the Sun Logo are trademarks or regis-

tered trademarks of Sun Microsystems, Inc. in the United States and
other countries.

e

a-
e
e
he
n
les
-
-
n
g
e
nd

he
s

it
e
.
-
o-
he

nt
ew
r-
er-

to
as

d-
l
ss

ic
he
ed
,
.
d

it
c-

p
af-
m.
-
s-
tor
n-

he
re
cessor characteristics that accurately generate the
memory access workload of a complex processor.

We note that a processor stalls due to conten-
tion for processor buffer resources in the cache hierar-
chy and other application characteristics in the
processor pipeline. These buffer stalls are heavily
dependent on the memory operations of the applica-
tion and the system latencies. Consequently, we
decouple the processor memory subsystem buffers
from other pipeline operations. Our model treats the
core pipeline as a black box and focuses on modeling
the interactions among core pipeline and buffers in the
processors memory hierarchy.

The processor queueing model is extensively
validated with cycle-accurate processor simulation.
While previous studies mainly validated using scien-
tific workloads, we focus on commercial OLTP appli-
cations, and use the TPC-C (Transaction Processing
Council) benchmark [13] with commercial database
software as a workload. In the process of validating
the model, we found that the model was sufficiently
accurate for analyzing trade-offs in sizes and alloca-
tion policies for the buffers in the processor’s memory
subsystem.

We use the processor queuing model to inves-
tigate how stall cycles and the overlapping of cache
misses vary with memory latencies. Pai et. al. [6] have
found that read clustering, or burstiness, is required to
achieve high overlapping on memory latency for
SPLASH workload. Our results show that the stores of
the OLTP workload are bursty. In addition, though
bursty loads and stores improved the overlapping of
memory access time, they are also more likely to fill
up the buffers and cause the processor to stall. Proper
sizing of the buffers and the cache architecture are
important to reduce such processor stall time

The rest of the paper is organized as follows.
Section 2 discusses some of the related work. Section
3 describes the model. Sections 4 and 5 present the
validation and overlap study results. Section 6 dis-
cusses integration of the processor queueing model
with the system model. Section 7 concludes the paper.

2. Related Work
There are several approaches to multiproces-

sor performance system evaluation.The most conser-
vative approach is to do cycle-by-cycle simulation for
the entire system from the processor to the intercon-
nection network and the memory system [5,7]. This
approach is detailed and has good accuracy, but is

extremely slow. It is unpractical for evaluating a larg
multiprocessor system.

Direct execution is an alternate system simul
tion method with improved simulation time over th
cycle accurate simulation [2,8]. As with the cycl
accurate simulation, direct execution also models t
actual execution of the instructions of an applicatio
on a processor. Direct execution, however, decoup
the processing of the functional and timing compo
nents of instruction execution. The functional simula
tion is accelerated by executing the binary of a
application directly on a host machine. The timin
information is analyzed independently. Pai and Adv
have done extensive studies with Ranganahan [6] a
Durbhakula [2] on issues and methods to improve t
accuracy of direct execution. Direct execution ha
improved the simulation time by a few times, but
still simulates many micro-architecture details. Th
size of the system that it can be applied to is limited

Analytical modeling using mean value analy
sis (MVA) has been used in shared memory multipr
cessor systems with processors that block on cac
misses [15]. This technique is shown to be efficie
and reasonably accurate for large systems. The n
challenges in analytical modeling for today’s supe
scalar, out-of-order processors are to model the ov
lap in memory accesses on cache misses and
estimate processor stall time. New parameters, such
fraction of overlap in load misses, number of outstan
ing misses, and probability of blocking due to ful
buffers, are defined to model the new memory acce
characteristics [1,10,14]. Except for [10], synthet
workloads are used for parameter values. In [10], t
application parameters are obtained from a simplifi
processor simulation derived from DirectRSIM [2]
including the blocking probabilities for a single buffer
Though the simulation is simplified and has achieve
two orders of magnitude speedup over RSIM [5],
maintains the complexity needed to simulate instru
tion execution.

All the analytical studies assume that overla
and blocking parameter inputs are static and are un
fected by the contention delay at the rest of the syste
In practice, blocking due to buffer capacity is a func
tion of the latency and the contention delay at the sy
tem, and iterations between the processor simula
and the MVA system model are needed in high conte
tion conditions. Our model can be used to derive t
blocking parameter values quickly, and is much mo

n
la-
of
er
on

or
ss

s at

d
o-
n
or
or

-
e
s-
-

me
r-
2
e
nch

r
the

n,
uff-
lightweight to iterate since we do not need to execute
the entire application.

3. The Processor Model

3.1 Processor overview

The processor modeled in this study was
designed to exploit both instruction level and thread
level parallelism while running at a high clock fre-
quency. It executes the SPARC instruction set and
features deep pipelining with superscalar, out-of-order
issue, speculative execution, and 2-way multithread-
ing. Capable of fetching multiple instructions per
cycle, the instruction fetch unit involves a two level
adaptive branch outcome predictor and a branch target
predictor. Fetched instructions are decoded, renamed
and inserted into an instruction issue buffer (IIB).
Instruction fetching is stalled once the IIB entries are
filled. Once in the IIB, an instruction can be issued as
soon as all its operands are available. Multiple instruc-
tions can be dispatched to functional units every cycle.

The cache hierarchy consists of three levels of
cache: separate L1 instruction and data caches, a uni-
fied L2 cache, and a unified L3 cache. Loads and
instructions that miss in the L1 caches are moved into
a L2 load buffer (LB) which can process instruction/
data read misses concurrently. When the LB fills up,
processing of L1 cache misses is blocked and will
eventually stall the processor. Read misses that miss in
the L2 and L3 cache are sent out of the processor over
a split transaction interconnect to the memory control-
lers.

A store remains in the IIB until it is the oldest
instruction, then it is moved into the store buffer (SB).
Once in the SB, stores are committed to the L2 cache
in program order. Store misses requiring memory
access can cause the SB to fill up which will back up
into the IIB and may eventually cause the processor to
stall.

The processor is highly speculative and uses
both control and data speculation to boost perfor-
mance. We use aggressive control speculation employ-
ing the branch predictor to fetch and execute
instructions beyond multiple unresolved branches. On
a misspeculated branch, instructions younger than the

branch are flushed from the IIB and LB and instructio
fetching resumes along the correct path. Data specu
tion is also employed to speculate on the value
loads. Correctly speculating on a load allows earli
dispatch of dependent instructions, misspeculati
results in reissuing of these instructions.

3.2 Model overview

As discussed earlier, the goal of the process
model is to accurately reproduce the memory acce
traffic, that is, the memory access types and the rate
which they are generated.

As the instruction fetch has well defined an
less complex blocking behavior, we decouple the pr
cessing of buffer management from the instructio
fetching and core pipeline (Figure 1). In the process
modeled, as long as there is no mispredicted branch
instruction cache miss and the IIB is not full, instruc
tions are fetched and installed into the IIB. Since w
are mainly concerned with memory hierarchy and sy
tem design studies from L1 cache outward, we sim
plify the model by aggregating the fetch time with
other pipeline operations and L1 cache access ti
into one service demand which feeds the IIB. This se
vice time is the average execution time in an ideal L
cache environment, including pipeline interlocks du
to data dependencies, L1 cache misses, and bra
mispredictions.

The contention for caches and buffe
resources in the model adds delays and reduces
instruction execution rate. We model the instructio
load, and store misses as they travel between the b
ers (IIB, LB, and SB), capturing the contention and

All SPARC trademarks are used under license and are trademarks or regis-
tered trademarks of SPARC International, Inc. in the United States and
other countries. Products bearing SPARC trademarks are based upon an
architecture developed by Sun Microsystems, Inc.

Instructions

pipeline time
(data dependent)

fetched/

buffer stalls

Instructions
Reads, Writes,

(latency

issued
System
Model

Memory
access

characteristics

dependent)

Processor Model

Updates, Writebacks

Figure 1. Breakdown of execution

 time in a processor

he
s-

3
we
on-

e

ey
ere
ed
ed
n-
ults
]

on
of
ads
i-
n-

ion
n
n.
a

ed
eventual stalls. The contention delay for buffers is
determined largely by cache miss rates and the mem-
ory latencies, the service time is relatively independent
of the memory latencies.

Table 1 defines the model parameters. The ser-
vice time for the core pipeline is the time to complete
the instructions in a fetch when the L2 cache is infi-
nite. The number of instructions in each fetch is deter-
mined by the application basic block characteristics
and the processor fetch unit architecture. We use a his-
togram for the number of instructions per fetch. Other
application characteristics include loads and stores per
instruction, instruction fetch and data load and store
cache misses per instruction, and the upgrades and
writebacks per instruction. The histogram of consecu-
tive stores can be used to model the store traffic more
accurately

Figure 2 details the queueing model for the
processor. The service demand for the core pipeline is
modeled with two identical delay servers, one for each
thread. At the end of the service time,n instructions
are generated according to the instructions per fetch
histogram. Every instruction resides in the IIB until it
retires. Load and store instructions are assigned based
on their per instruction probabilities. Instruction fetch
and data cache misses are determined randomly
according to their respective miss rate. On an instruc-
tion miss, the fetch process stalls until the missed

instruction returns. A data load miss proceeds to t
load buffer (LB) and proceeds to L3 cache and the sy
tem memory model when it misses in L2 and L
caches respectively. For validation of the processor,
treat the system model as a delay server, i.e., a c
stant memory latency.

The in-order retirement of instructions is
enforced by the IIB. If an instruction completes befor
older instructions, it remains in the IIB until it
becomes the oldest. Stores remain in the IIB until th
are the oldest and then they are moved to the SB wh
they must commit in order. Load misses are assum
to be independent and complete (i.e., can be remov
from the LB) as soon as the data is returned. In ge
eral, load misses can be dependent. However, res
of internal studies using an infinite buffer size [11,12
indicate that the effect of load-load dependencies
execution rate is low for OLTP workloads because
the random nature of the data accesses. For worklo
where this effect is significant, the model can be mod
fied to add a probabilistic measure of load-load depe
dencies.

While the highly speculative nature of the
processor helps to boost performance, misspeculat
results in more memory traffic due to cache pollutio
and possibly more stalls due to LB buffer contentio
In our model, we account for misspeculation through
higher cache miss rate obtained from the detail

Table 1:Model Parameters

Application parameters Measurement of parameter value

Service demand at the pipeline Derived from cycle-accurate processor simulation
with infinite L2 cache

Histogram of instructions per fetch Derived from cycle-accurate processor simulation
with infinite L2 cache

Loads per instruction
Stores per instruction

Statistics collected from trace analysis

Histogram of consecutive store Statistics collected from trace analysis

Cache misses: Level 1, 2 and 3
 instructions, data reads,

data writes, upgrades and
dirty writebacks

Statistics collected from cache simulations and cycle-
accurate processor simulation

System parameters

Cache and memory latencies Design specifications, values vary

Buffer sizes Design specifications, values vary

in-
l

for
are
ld
th

un.
for
e
n-

uch
ign

d
e-

are
c-
he
be
is
al-
e
n
nd
le
cycle accurate simulations.We do not model the LB
and IIB flushing of the wrong path instructions on a
branch misprediction since we compared the miss
rates with and without branch misprediction and dis-
covered that the differences were small. However, the
model can be refined to flush the buffers with a branch
misprediction probability.

The implementation of the model is relatively
straightforward and is implemented using a commer-
cial simulation package. The buffers are implemented
as pools of numbered tokens. Tokens are retrieved
from a buffer pool in sequential order and are put back
whenever a buffer space is released. A store can be
removed from the IIB once it is the oldest and acquires
a space in the store buffer. When LB or SB is full, IIB
can become congested and instruction fetches will
eventually stall when the IIB is full.

We use two service centers to implement the
pipeline cache. The first service center models the first
stage of the pipeline. The second service center is sim-
ply a delay in the rest of the cache pipeline depth. We
model alternate load and store queue scheduling, and
first-come-first serve scheduling at the caches.

3.3 Obtaining Model Parameter Values

Table 1 also summarizes the measurement and
estimation of the model’s parameter values. The pipe-
line service demand is derived from the cycles per
instruction when the L2 cache is infinitely large. This
parameter and other application parameter values,
such as the histogram of instructions per fetch and the

loads and stores per instruction are derived from a s
gle run of the detailed simulation model. An additiona
run is needed to derive the pipeline service demand
dual-threaded execution. The cache miss rates
obtained from cycle accurate simulations but cou
also be obtained using simple cache simulations. Bo
single and dual threaded cache simulations are r
Cache miss rates can also be varied independently
sensitivity studies. The histogram of consecutiv
stores was obtained empirically and was used to co
trol the burstiness of stores. System parameters, s
as buffer sizes, are obtained from processor des
specifications.

The model application parameters are define
so that we can leverage on data from detailed trac
driven processor and cache simulation models that
always created in the development of new archite
tures. The histogram of instructions per fetch, and t
values of load and store per instruction can also
estimated from other tools when a detailed simulator
not available. One such suite is the data prefetch an
ysis tools used in compiler technology [12]. Thes
tools model the fetch unit and the branch predictio
unit for data dependency analysis. The service dema
can be estimated by static analysis, from older cyc
accurate simulators or from existing machines.
Instruction
fetched/issued

i & r

w L2 Cache

LB

L3 CacheSystem
r & w miss

 r & w miss

ic miss blocked fetch

IIB
L1 miss

Model

SB

Figure 2. Processor Model

a-

C
le
ell
e
is-
o
s of

o
we
g
d-
h
els,
es
re
4. Model Validation

4.1 Validation with Cycle Accurate Simulation

The model is validated with a cycle accurate
processor simulation. The cycle accurate simulator
models the processor and system architecture in fine
detail. The simulator is trace driven and simulates exe-
cution on a cycle-by-cycle basis. The processor and
system parameters were chosen to reflect typical sys-
tems in the near future. Table 2 summarizes the base-
line processor parameters used in our validation. We
use a constant 400 cycle memory latency for the base-
line configuration.

For validation, we examined the IPC (Instruc-
tions Per Cycle), histograms of the buffers usage, and
histograms of the outstanding memory loads and
stores. We compare the results for two OLTP traces,
Trace-A and Trace-B, collected from commercial

.

database software. Trace-A is from a small configur
tion and Trace-B is from a larger configuration.

Table 3 shows the percent differences in IP
compared to the cycle accurate simulation for sing
and dual thread. The estimated IPC agreed very w
for Trace-A for both single and dual thread. Th
queueing model estimates is about 10% more optim
tic for Trace-B. The main differences between the tw
traces are the cache miss rates. The cache miss rate
Trace-B are significantly higher (> 50% more). T
investigate the causes of the estimated differences,
studied how the two models compared in estimatin
the overlapping of the load and store misses. The fin
ings for the dual thread results for Trace-B, whic
have the highest discrepancy between the two mod
are discussed. The percent difference of IPC improv
to 4.4% for dual thread Trace-B after we added sto
burstiness to the queueing model.

Table 2:Processor Parameters

Instruction Issue Buffer 128 entries
L2 Load Buffer 32 entries
Store Buffer 32 entries
L2 cache 1MB, 4-way set

associative
L3 cache 32 MB, direct mapped

Table 3: Comparison of IPC and number of
outstanding Loads and Stores

Single Thread
Queueing/

Cycle Accurate

Dual Thread
Queueing/

Cycle Accurate

IPC
Trace-A
Trace-B

-0.43%
9.03%

0.05%
9.51%

Number of
Outstanding at
the System
(Trace-B)

Loads 2% 0.61%
Stores 3.2% 4%

Table 4: Distribution of Loads and Stores at System for Dual Strand (trace-B)

Number at System

Loads (percentages) Stores (percentages)

Cycle Accurate Queueing Cycle Accurate Queueing

1 61.1 48.3 19.5 10.7

2 23.3 38.2 22.1 19.9

3 10.7 11.4 19.1 23.5

4 3.5 1.9 14.8 20.3

5 and more 1.4 0.2 13.5 26.8

-
to

at
of
ll.
ni-
s
is-
g
f

e
LB
lit-

nd
by
nt
e

ng
ffer
Comparison of the number of outstanding
loads and stores at the system (Table 3) for Trace-B
showed that the queuing model is more optimistic.
More loads and stores are able to access the memory
concurrently and, hence, benefit more from overlap-
ping. Table 4 shows the distribution of the number of
cycles at which there are 1 to 5 and more number of
outstanding loads and stores at the system. For loads,
the queueing model has greater discrepancies at 1 and
2 loads, and is slightly optimistic in load overlapping.
For stores, higher clustering when there are larger
numbers of outstanding stores indicates that the
queueing model is not blocking store misses often
enough.

We further investigate the buffer usage. We
find that the differences in the utilization of the buff-
ers, as shown in Table 5, are within 6%. The utilization
of SB is much higher than LB because we model a L1
write through cache. Nonetheless, the stores have a
higher miss rate than loads at the L2 cache. Figures 3,
4 and 5 compare the buffer usage distribution for IIB,
LB, and SB respectively. The IIB usage in Figure 3
shows that the two models agree well in the lower
range but diverge at the higher end. The lower proba-
bility that the IIB is full means that the queuing model
is less likely to be blocked.

Figure 4 shows that the queueing model has a
higher LB usage at the lower range. In the queueing
model, we omitted the effect of aliasing on multiple
occupancy in the load buffers; as a result, the LB is
less likely to have high concurrent occupancy than the
cycle accurate model indicates. However, because the
processor queueing model has higher instruction exe-
cution rate, more load misses arrive randomly at the
LB. This explains the differences at a lower occupancy
of LB and a higher average number of LB used. Since
the usage of the load buffer is very low and a

more refined model would have negligible improve
ment on the accuracy of the model, thus, we chose
keep the simple load buffer model.

The store buffer usage in Figure 5 shows th
the cycle accurate simulator has a burstier arrival
stores. There is a higher peak when the buffer is fu
The queueing model, on the other hand, is more u
formly distributed at higher occupancy. This i
expected since the loads and stores are uniformly d
tributed in the instruction stream for the queuein
model. We will discuss the effect of burstiness o
stores in the sections 4.2 and 4.3 below.

4.2 Sensitivity Studies

We did sensitivity studies by varying the cach
sizes and the store and instruction buffer sizes. The
size is unchanged because its usage is low and has
tle effect. The L2 and L3 cache sizes are doubled, a
the store and instruction buffer sizes are increased
two and four times. Table 6 compares the perce
gains in IPC (Instructions per Cycle) predicted by th
cycle accurate simulator with those from the queuei
model. It shows that at the base cache and store bu
sizes, the difference in percent gain from the two

.

Table 5:Buffer Utilizations for Dual Strand
(trace-B)

Buffer
Type

Dual Strand (trace-B)
Cycle Accurate Queueing

IIB 39.6% 35.9%
LB 12.2% 17.2%
SB 44.3% 38.9%

0 10 20 30 40 50 60 70 80 90 100
Percent SB size

0

10

20

30

40

50

60

P
er

ce
nt

 C
yc

le
s

Figure 3. IIB Usage Distribution
(trace-B, dual strand)

 Queueing

 Cycle Accurate

,

u-
as
es
IB
re
r
e

models is the largest. The cycle accurate model gains
little by doubling the IIB size, while the queueing
model gains a 16%.

As the contention on the store buffers is allevi-
ated by either increasing the cache sizes and, hence,
lowering the store cache miss rates or by doubling the
store buffer size, the performance gain from architec-
ture changes estimated from the two models are simi-
lar. The same design decision would have been made
using either model.

From these results, we believe that the que
ing model is not capturing the store buffer pressure
in the cycle accurate model. This difference becom
significant as more instructions are fetched when I
is doubled. It is evident that the burstiness of sto
arrivals is important in identifying the correct size fo
the store buffer, which has significant impact on th
performance.

0 10 20 30 40 50 60 70 80 90 100
Percent LB size

0

10

20

30

40

P
er

ce
nt

 C
yc

le
s

Figure 4. LB Usage Distribution
(trace-B, dual strand)

 Queueing

 Cycle Accurate

0 10 20 30 40 50 60 70 80 90 100
Percent SB size

0

10

20

30

P
er

ce
nt

 C
yc

le
s

Figure 5. SB Usage Distribution
(trace-B, dual strand)

 Queueing

 Cycle Accurate

Table 6: Sensitivity Studies Results

L2
(MB)

L3
(MB)

SB IIB %IPC gain
Cycle Accurate

%IPC gain
Queueing

1 16 32 64 base base

1 16 32 128 5.9% 16.2%

1 16 64 128 11.8% 18.3%

1 32 32 64 2.9% 5.5%

2 16 32 64 14.7% 11.6%

2 16 32 128 23.5% 26.4%

2 16 64 128 26.5% 28.2%

re
k-
ne
to
he
to

of
he
nd
o-
ap
4.3 Burstiness of Stores

To verify that the burstiness in store arrivals is
the reason that store buffer in the queueing model is
not blocked as frequently as in the cycle accurate
model, we modify the random assignment of stores in
the queueing model to use a histogram to generate
consecutive stores in each fetch. The average number
of stores per instruction and the store miss per instruc-
tion remained unchanged.

Table 7 shows the distribution of consecutive
stores in each fetch with random assignment and using
an input histogram. Figure 6 shows that the store
buffer usage of the two models agreed well. The dif-
ference in IPC and the average number of busy store
buffers between the two models improve by 5% for the
base configuration as shown in Table 8.

5. Overlap (Hidden) Miss Penalty Study
In an ideal buffer for an out-of-order, supersca-

lar processor, one expects the longer the latencies, the
more concurrent misses and greater the overlapping
(or hiding) of miss memory access times. However, in
practice, there are limited buffers. As latencies
increase, buffers are held longer and the processor
eventually stalls waiting for the buffers. After validat-
ing the queuing model with the cycle accurate model
for different buffer sizes and latencies, we vary the
memory latency to study the performance benefit of
overlapping of misses as the latency increases, or
alternatively, how to size the buffers with the memory
latency.

To measure the benefit of overlap, we compa
the hidden miss penalty (%Overlap) to that in a bloc
on-miss processor. To calculate %Overlap, we defi
the Load Miss Penalty as the number of cycles
resolve all load misses and Cycles Blocked as t
number of cycles the processor was blocked due
memory operations. The %Overlap is the fraction
the Load Miss Penalty that are overlapped, i.e., t
percent difference between the Load Miss Penalty a
Cycles Blocked. In a blocking processor (i.e.,the pr
cessor stalls when there is a load miss) this overl
factor would be equal to zero.

Table 7: Distribution of Consecutive Stores

Number of
consecutive

stores

Random
Assignment (%)

Burstiness
Histogram (%)

1 68.1 41.3
2 24.9 28.7
3 6.0 0.0
4 0.9 0.0
5 0.1 0.0
6 0.0 0.0
7 0.0 16.5
8 0.0 13.5

Table 8: Comparison of IPC and SB Usage with
Store Briskness

Random
Assignment

Burstiness
Histogram

IPC
Cycle Accurate/

Queueing
+9.5% +4.4%

SB Usage 38.9% 42.7%%

0 10 20 30 40 50 60 70 80 90 100
Percent SB size

0

10

20

30

P
er

ce
nt

 C
yc

le
s

Figure 6. SB Usage Distribution with Bursty Stores
(trace-B, dual strand)

 Queueing

 Cycle Accurate

e
ys-
nk
for
ly.
sor
u-

ng
-

s-
r
il-
an

nd
ili-

a-
r,
ent
l

es
r

e
e
a-

o-
-to-
ase
Table 9 shows the %Overlap factor as the
memory latency in processor cycles is varied from 200
to 1000 cycles using the baseline buffer sizes and
cache configuration. The results show that with a 200
cycle latency, as much as 61.7% of load miss latency is
hidden. However, as the latencies increase, the %Over-
lap actually decreases. This is due to the increase in
the %Cycles Blocked. From the results, we can see
that the %Cycles Blocked doubles for a five fold
increase in latency. Further examination revealed that
the increase in %Cycles Blocked as the latency
becomes longer is due to the SB being full. Table 9
shows the %Cycles the SB is full increases as the
latency increases. In fact, as the latency increases, the
blocking due to the SB full eventually results in the
%Overlap decreasing until it finally disappears when
the store buffer is about 50% of time full.

We did the same set of runs with one sixth
store miss rate to reduce the pressure on the store
buffer. The results shown in Table 10 show a definite
decrease in %Cycles the SB is full as the latency
increases. For a 200 cycle latency, stores have little
effect and the percent of load misses that overlap is
about the same as our previous result. For latencies
greater than 200 cycles, the %Overlap is much better
than our previous case. This shows that for the larger
latencies, stores can have a significant effect on the
%Overlap factor.

6. Integration with System Model

We are currently investigating how to integrat
the processor queueing model into multiprocessor s
tem performance evaluation. One approach is to li
the processor queueing model with a system model
an end-to-end simulation, as is done conventional
Another approach is to iterate between the proces
queueing model and a system model. This is partic
larly useful when the two models are developed usi
different tools, or of different types (e.g., an MVA sys
tem model).

In the analytical model described in [3], a
blocking probability vector is used to estimate proce
sor stall time while waiting for a buffer. Our processo
queuing model can generate similar blocking probab
ities faster than an execution based model, and c
quickly re-calculate probabilities as the latencies a
contention at the system cause the blocking probab
ties to change.

Many system performance issues can be an
lyzed with statistical synthetic workloads; howeve
there are some studies, such as buffer replacem
algorithms and flow control at memory, that wil
require memory footprint with timing information. We
are looking into augmenting cache simulation trac
with timing information derived from the processo
queueing model.

For the processor queueing model to provid
accurate memory activities for a system model, th
inputs to the queueing model must capture the applic
tion characteristics at the specific configuration of pr
cessors. In particular, cache miss rates and cache
cache transfer rates must reflect the larger datab

Table 9: Processor Stall and Cache Miss
Overlap for a Range of Latencies

Latency
processor

cycles

%Cycles
Blocked

%Overlap
(i+r)

%Cycles
SB is
Full

200 34.9 61.7 11.8

330 45.8 47.8 28.8

460 55.7 31.5 38.6

730 69.0 4.8 48.2

1000 76.2 -11.3 52.5

Table 10: Processor Stall and Cache Miss
Overlap at a lower store miss rate

Latency
processor

cycles

%Cycles
Blocked

%Overlap
(i+r)

%Cycles
SB is
Full

200 33.5 62.7 3.3

330 41.5 54.1 8.4

460 48.8 45.3 12.6

730 60.5 30.3 18.5

1000 67.6 21.0 22.1

t’l

g
-
-

l
-

ts

f

r-
of
y,

e

y,”
r

e
,"
-

s-
,

or

.
-
-

.

s-

-
cy
r

and the greater number of processes executing in a
large system.

A processor model is only a submodel in over-
all system performance analysis. The accuracy of the
system submodel is as important to obtain an accurate
overall performance estimates. By establishing the
accuracy of our processor queueing submodel, we can
confidently integrate it into a multiprocessor system
model.

7. Conclusion
This paper presents a processor queueing sim-

ulation model for a modern complex processor. For
system design using processors which aggressively
exploit instruction and thread-level parallelism, we
observe that the processor’s memory subsystem,
which includes caches and buffers, requires the most
detailed modeling for memory intensive OLTP work-
loads. The model implements easily, executes quickly
and produces reasonably accurate results. Another
advantage of this type of model is that we can vary the
model’s workload parameters without the need of
actual traces, which are often difficult to acquire for
large commercial workloads. It is useful for analyzing
future workloads or complex workloads for which
traces are not available.

The paper shows that burstiness or clustering
of stores in OLTP workload has a significant impact on
performance, and should be included when evaluating
the buffer sizes. The model is used to analyze the over-
lap in miss penalty with increasing memory latency. It
is shown that the buffer sizes should be tuned by
designers to achieve good overlapping when the
latency increases. We have discussed a few methods
that we are investigating to integrate the processor
model with a system model.

Acknowledgement
We would like to thank Sudarshan Kadambi

and Vijay Balakrishnan for providing the cycle accu-
rate simulation results, Robert Lane for reviewing the
paper, Robert Cypher for prompting the thought of
modeling cache misses overlap, and Anders Landin
for insisting to see validation with more stressful
workload.

References
[1]D.H. Albonesi and I. Koren, "A Mean Value Analy-
sis Multiprocessor Model Incorporating Superscalar

Processors and Latency Tolerating techniques," In
Journal of Parallel Programming, 1996.
[2]M. Durbhakula, V. Pai, and S. Adve, “Improving
the Speed vs. Accuracy Tradeoff for Simulatin
Shared-Memory Multiprocessors with ILP Proces
sors,” Proc. Intl. Symp. on High Performance Com
puter Architecture, 1999.
[3]S. S. Mukherjee, et. al., "Wisconsin Wind Tunne
II: A Fast and Portable Parallel Architecture Simula
tor," Workshop on Performance Analysis and I
Impact on Design, June 1997.
[4]V. Krishnan and J. Torrellas, "A Direct-Execution
Framework for Fast and Accurate Simulation o
Superscalar Processors," PACT’98, October 1998.
[5]S. Pai, P. Ranganathan, and S. Adve, RSIM Refe
ence manual, Technical Report 9705, Department
Electrical and Computer Engineering, Rice Universit
Aug, 1997.
[6]V. S. Pai, P. Ranganathan, and S. Adve, “Th
Impact of Instruction Level Parallelism on Multipro-
cessor Performance and Simulation Methodolog
Proc. Intl. Symp. on High Performance Compute
Architecture, 1997.
[7]M. Rosenblum, et. al., "Using the SimOS Machin
Simulator to Study Complex Computer Systems
ACM Transactions on Modeling and Computer Simu
lation, 1997.
[8]E. Schnarr and J. Larus, "Fast Out-of-Order Proce
sor Simulation using Memorization," ASPLOS-8
October 1998.
[9] E.Schnarr, M. Hill and J. Larus, “Facile: A Lan-
guage and Compiler for High-Performance process
Simulators”, PLDI’01, 2001.
[10]D. Sorin, V. Pai, S. Adve, M. Vernon, and D
Wood, “Analytical Evaluation of Shared-Memory Sys
tems with ILP Processors,” Proc. Intl. Symp. on Com
puter Architecture, 1998.
[11]Sun Internal Presentation, R. Cypher.
[12]Sun Internal Presentation, N. Kosche and Q
Jacobson.
[13]TPC Benchmark C Standard Specification, Tran
action Processing Performance Council.
[14]D. Willick and D. Eager, “An Analytical Model of
Multistage Interconnection networks,” in Proc. ACM
Sigmetrics, May 1990.
[15]M. Vernon, E. Lazowska, and J. Zahorjan, “An
Accurate and Efficient performance Analysis Tech
nique for Multiprocessor Snooping Cache Consisten
protocols,” International Symposium on Compute
Architecture, 1988.

Session 4

Workload Characterization

Performance Analysis of Speech Recognition Software

Chunrong Lai, Shih-Lien Lu and Qingwei Zhao
Intel Corporation

Comparison of Memory System Behavior in Java and
Non-Java Commercial Workloads

Morris Marden, Shih-Lien Lu, Konrad Lai
and Mikko Lipasti

University of Wisconsin – Madison
Intel Corporation

Characterizing TPC-H on a Clustered Database Engine
from the OS Perspective

Yanyong Zhang, Jianyong Zhang, Anand
Sivasubramaniam, Chun Liu and Hubertus Franke

The Pennsylvania State University
IBM T.J. Watson Research Center

Performance Analysis of Speech Recognition Software

Chunrong Lai, Shih-Lien Lu+ and Qingwei Zhao
China Research, Intel Labs.

(chunrong.lai@intel.com, qingwei.zhao@intel.com,
+Microprocessor Research, Intel Labs.

5350 NE Elam Young Parkway, Hillsboro, OR 97124
(shih-lien.l.lu@intel.com)

Abstract

This paper characterizes the behavior of a
speaker-independent large vocabulary continuous
speech recognition (LVCSR) system. This system is
used to dictate Chinese (Mandarin) utterances of
different speakers and achieves a word recognition
accuracies of 85%~96% depending on the cleanness
of input signals and the complexity of the spoken
sentences. Several methods are used to characterize
its processing behavior. First, the same system is run
on different Intel platforms and their performance
measured. Second, we use an Intel performance
monitoring toolset – Vtune to read hardware counters
build in the CPU. These counters measured the
instruction distribution as well as processor
utilization rate. Third, a full platform simulator
SoftSDV together with a cache simulator is used to
study its memory behavior in more detail. We find this
software system to have a large memory working set.
Data access to first level cache has good locality.
There are two groups of memory usage displacing
each other in the second level cache. Second level
cache miss rate declines much fast after the size
increases beyond 8MB. We also identify a few
instructions that cause a larger number of level-2
cache misses. Using software prefetching we improve
the overall performance by an average of 7%.

1. Introduction

Speech recognition (SR) by computer has been an
active research for a while now. It provides a natural
interface for human to interact with machines. Many
speech recognition systems are available in the market
such as Dragon Systems’ Dragon Naturally Speaking
[1], IBM’s viaVoice [2], L&H’s Voice Xpress [3] and
Philips’ FreeSpeech [4]. However, general adoption
of machine speech recognition is still not widely
accepted due to recognition unreliability. Much
research efforts continue to be devoted in perfecting
speech recognition techniques in recent years. So far
the most widely accepted technique is based on
hidden Markov Model (HMM). It is used in most
state-of-the-art SR systems in the world. These large
vocabulary continuous speech recognition systems
based on HMM often face the issue of trading-off

between the recognition accuracy and the computation
speed. Thus it is important to understand the behavior
of LVCSR in order to improve its performance.

Unfortunately processor performance
characteristics of speech recognition applications are
not well published. Agaram et. al. [5] analyzed the
characteristics of a public domain speech recognition
engine called Sphinx [6]. This engine has a
vocabulary of 21000 and is based on semi-continuous
hidden Markov Model (SCHMM). Intel Labs, Intel
China Research Center (ICRC), has developed a
LVCSR engine that was originally licensed from
Oregon Graduate Institute (OGI) [7][19]. The
vocabulary of this system is over 51000 words and is
based on continuous hidden Markov Model (CHMM)
with multivariate mixture Gaussian as observation
density to cover speech signal variability. With
sufficient training data, CHMM systems gives better
recognition performance. However, these systems are
more complex and slow down recognition speed.
ICRC’s LVCSR engine has been extensively tested
with various Chinese (Mandarin) speakers and can
achieve speaker-independent word recognition
accuracies of 85%~96%. The variation of accuracy is
due to the cleanness of input signals and the
complexity of the spoken sentences. In this paper, we
examine the behavior of ICRC’s LVCSR speech-
engine.

We study this engine with several tools. First, we
measure the running time of this LVCSR engine on
different Intel Architecture based platforms. These
platforms vary in CPU frequency and level-2 cache
size. We, then, use a performance analysis tool called
VTuneTM [8] to uncover more detail characteristics of
the program. Vtune supports both event and time
based sampling. It also allows users to perform call
graph profiling. We mainly use the event-based
sampling (EBS) capability to collect run-time
information by reading the performance monitoring
counters on the processor. During event-based
sampling, VTune interrupts the processor after a
specified number of event occurrences, and collects a
sample containing the instruction addresses where the
event occurs. At the end of EBS, we determine how
many times an event occurred by the collected data.
Information collected with VTune includes instruction
distribution, branch misprediction rate, cache misses,
and instruction/micro-op executed per cycle. These

data are compared with some of the SPEC 2000 CPU
benchmark programs [9]. As expected, there are many
floating-point computations in this program. However
many of them are of the form ADD/SUB followed by
Multiply instead of the other way around. Moreover,
we observe that around 65% of the time the processor
is not retiring any instructions/micro-ops while
running this LVCSR program. It also has a relative
large second level cache miss rate. We perform
further study on the memory behavior of this program
using software simulation.

In order to consider all the effects, including
system calls, we decide to use a full system simulator.
We ran this LVCSR program on this full system
simulator called SoftSDV [10], in batch mode using
speech input captured in files. Due to long simulation
time we generate memory traces and run these traces
through a trace-driven cache simulator with different
cache configurations. The results show that this
engine in particular, and speech recognition
applications in general, has large memory working
sets. Memory references have good spatial locality
and not as good temporal locality. Level 2 (L2)
cache’s miss ratio changes at a different rate after its
size grow larger than 8 MB.

2. General features of LVCSR

A speech recognition system converts speech into
text strings. An uttered sentence is digitized first.
These digitized samples are grouped in overlapping
frames. A set of features [11] capturing the
characteristics of a frame is extracted. This set of
features is referred to as an observation. Thus, an
uttered sentence is represented by a group of
observations: O = o1, o2, o3, … o t-1, ot. The goal of the
speech recognition system is to find the most possible
word-sequence, W = w1, w2, w3, … w n-1, wn, that matches
the observations. This process is express
mathematically [12] as:

W = arg maxW P(W|O) (1)

The right hand side of equation (1) can be re-written
due to Bayes rule:

W = arg maxW P(W)P(W|O)/P(O) (2)

In equation (2), the probability of observed input
sequence P(O) is constant. The probability of a word
sequence P(W) is part of the language model and acts
as a search constraint. The conditional probability
P(W|O) measures how well the word string W
matches the given input O. This conditional
probability is obtained during the training phase and
is usually referred to as the acoustic model.

Acoustic models are built for pre-specified
acoustic units. In our system, phonemes (phones) are
the basic acoustic units. Each phone in the language is
modeled by an HMM. An HMM consists of two

stochastic processes. One is a hidden Markov chain,
which accounts for temporal variability. The other is
an observable process, which accounts for spectral
variability [13]. These two have proven to be very
powerful to cope with most sources of speech
ambiguity, and very flexible to allow the realization
of recognition systems with dictionaries of tens of
thousands of words. Each HMM consists of several
states and different phones may share a state. Several
phones are grouped to form a word, and words are
collected to construct a sentence. Therefore a given
sentence can be thought of as a collection of phones.
There are thousands of HMM states in our system.
Figure 1 illustrates an example HMM, which contains
three regular states and two pseudo states (a start and
an end).

b3(o6)b3(o5) b3(o7)b1(o1)

o0 o1 o2 o3 o4 o5 o6 o7

a34a23a12a01
4

a11 a22 a33

1 2 30

b1(o0) b1(o2) b2(o3) b2(o4)

Figure 1. A five-state HMM with two pseudo states

start end

The transition from state i to state j is determined
by the transition probability aij. At each time unit, a
speech observation ot is matched according to the
output density function bi(ot). HMMs can be classified
according to the nature of the elements of the B
matrix, which are distribution functions. Discrete
HMMs’ (DHMMs) distributions are defined on finite
spaces. In this case, observations are characterized as
discrete symbols chosen from a finite alphabet . In
detail, each incoming observation vector is replaced
by the index of the closet vector in a precomputed
codebook, and the output probability functions are
just lookup table containing the possibilities of each
possible VQ (vector quantization) index.
Distributions are associated with model transitions. A
transition probability and an output distribution on the
symbol set are associated with every transition.

Another possibility is to define distributions as
probability densities on continuous observation
spaces. In this case, strong restrictions have to be
imposed on the functional form of the distributions, in
order to have a manageable number of statistical
parameters to estimate. The most popular approach is
to characterize the model transitions with mixtures of
base densities function having a simple parametric
form. The base densities function is usually Gaussian
or Laplacian. The mean vector and the covariance

matrix can parameterize the base densities function .
HMMs with these kinds of distributions are usually
referred to as continuous HMMs (CHMMs). In order
to model complex distributions in this way a rather
large number of base densities has to be used in every
mixture. This may require a very large training corpus
of data for the estimation of the distribution
parameters.

In semicontinuous HMMs (SCHMMs), for
example [14], all mixtures are expressed in terms of a
common set of base densities. Different mixtures are
characterized only by different weights. A common
generalization of semicontinuous modeling consists of
interpreting the input vector as composed of several
components, each of which is associated with a
different set of base distributions. The components are
assumed to be statistically independent. The
distributions associated with model transitions are
products of the component density functions.
Computation of probabilities with discrete models is
faster than with continuous models, nevertheless it is
possible to speed up the mixture densities
computation by applying vector quantization (VQ) on
the Gaussians of the mixtures [15]. Interested readers
may find more details on their differences from [16].

As mentioned, in CHMM each HMM state
contains large number of parameters of Gaussian
distribution. In our system, each state requires 3 ~
4KB of space to store these parameters. With
thousands of state in our system the amount of storage
required to store these parameters ranges in tens of
million bytes (MB). Each time an input frame
(represented as features) comes, Gaussian
computation is processed using these parameters to
get a probability of how close the observation (frame)
matches a state is. Pronunciation dictionary is
organized as a lexicon tree as illustrated by Figure 2
for searching. When the searching process reaches the
leaf nodes of a lexicon tree, known as word boundary,
the language models are accessed to get a score in
addition to the acoustic score. Thus the recognition
computation involves the calculation of the likelihood
function P(O|λ), where λ is a HMM. The recognition
process consists of searching through all possible
phones sequence, by looking up the acoustic model
and the language model, and then finds the most
meaningful (or with the highest score) sequence. In
order to reduce the amount of possible branches needs
to be searched, many unlikely paths are pruned during
the search process.

The storage requirement of the language model is
determined by the size of the vocabulary and is
usually larger than the acoustic model. With a
vocabulary of more than 51,000 words, the size of the
language model and language look-ahead model is
around 110MB. Besides the acoustic model and
language model, there is an additional storage space
requirement for the recognition process. During the
search process, space is needed to construct lexicon
tree and all current likely paths under consideration.

This is named the search buffer and its size ranges in
tens of MB also. When the search process arrives at
the word boundary, accesses to the search buffer and
the language model interact with each other. During
the normal search mode, accesses to the search buffer
and the acoustic model are interleaved. All these three
spaces are large in size and may displace each other
from cache memory.

Figure 2. Lexicon tree

root

s

au ae

d tso

sad sat

The technique named language model look-ahead
is used [17][18] to reduce possible search space, thus
reduces the computation time and search buffer space.
This technique adds language model information into
the node of a lexicon tree and further prunes the tree
according to it. With this look-ahead technique fewer
searches can reach the word boundary [19]. It
increases the access frequency of the language model.
However, it is still less than the access frequency of
the acoustic model. The search buffer maintains
dynamic data structures used to store all possible
recognition results. These structures are very input
dependent. For example, with noisy speech signals the
size of search buffer may be tens of the size of clean
speech signals.

During the search, beam values can be used to
help decide if a search path should continue. If a score
is not much lower than the current highest score
according to the beam value, the path is likely to
survive. We will keep the path in the search buffer.
Thus the larger the beam value, the more space is
needed to keep all temporary data around. More
computations and search effort are required also.
Matching (Gaussian computation) of continuous
HMM to find the most likely phone spoken requires a
lot of computation. Moreover, maintaining of the
uncertain number of tokens in such a big tree also
needs to be handled carefully. Good pruning
algorithm can reduce the number of active nodes,
active states and active tokens dramatically. For
example, in our current system the active number of
states is generally less than 1% of the total number.
Many other optimization techniques at the
implementation level have been applied to the speech

recognition system. For example, the pointer-base
lexicon tree can be reordered based on some chunk
with better data locality. Prefetch instructions can be
employed inside the Gaussian mixture computation of
the large HMM state since the data locality is better
there. Also with the access locality, the language
model look-ahead [7][18] probability of a node can be
computed speculatively and buffered with the
computing of its brother nodes. We have mentioned
that different nodes may share a same trained state. A
buffer is used for remembering the results of these
Gaussian mixture computations. Thus, we avoid
duplicating these Gaussian mixture computations if
the probability has already existed in the buffer. Also
because of the continuity of the voice, when a frame
is computed with a HMM state, the following several
frames can also be computed with the same state
speculatively so as to utilize the state data more
efficiently to avoid future stalls. This buffer becomes
the fourth memory working set of the system. Now in
the processing of normal nodes, the buffer interleaved
with the search space, only when the buffer misses,
the HMM states of the acoustic model are accessed.
All these optimizations and speculative computations
increase the data locality of the system and speed up
the system. We also use tuned performance library
[20][21] with Streaming SIMD Extension (SSE)
instructions as much as possible to speed up the
application.

3. Analysis Results

As mentioned, we analyze the speech recognition
software using three approaches. First, we run the
application on different platforms to understand how
well the application scale with processor
advancement. Speech input is captured in files and ran
in batch mode in order to control the quality of the
samples. We then use an Intel toolset called Vtune to
collect built-in performance counter values [22][23].
Finally we use a full system simulator called SoftSDV
together with a cache simulator to study the memory
behavior in more depth.

3.1 Real time performance on different
platforms

We use the indicator xRT (real time ratio) to
measure the speed of the speech engine. An xRT of 1
means the time to decode is the same as the speech
signal time. A lower value of xRT means better
performance. We run the LVCSR engine on the
following four platforms.

1. Pentium® III 550 MHz with 2MB off-chip L2
cache, 512MB SDRAM. (With 440GX AGPset)

2. Pentium III 866 MHz with 256KB L2 on-chip
cache, 512MB RDRAM. (With 840 Chipset)

3. Pentium III1000 MHz with 256KB L2 on-chip
cache, 512MB RDRAM. (With 840 Chipset)

4. P41.5GMhz with 256KB L2 on-chip cache,
512MB RDRAM. (With 850 Chipset)

First, each machine is restarted and then the
speech engine is run. During this 1st run cache and
TLB are all just initialized. After the first run, this
LVCSR engine is terminated and is started again. We
again capture the running time the 2nd time. Figure 3
illustrates the results of these two runs on the above
listed four platforms. The 2nd and the 3rd platforms are
identical except the CPU frequency. The 1st platform
uses a slower CPU, however the level 2 cache is off-
chip and larger in size. The speed of the off-chip
cache is half of the core speed, while the on-chip
cache has the same speed as the core. Moreover, the
1st platform uses SDRAM instead of RDRAM thus it
has a lower memory bandwidth. Two more data
points were collected for the 1st platform by switching
the CPU with different L2 sizes. It seems a larger L2
even with a slower speed tends to compensate the lack
of CPU frequency.

For the 1st platform we further experiment with
the memory requirement by varying the amount of the
SDRAM in the system and collected the real time rate
and CPU utilization rate. Figures 4 and 5 summarize
the results. We see both the real time performance and
CPU utilization level off after 256MB. Unfortunately
we are unable to further delineate between 256MB
and 128MB. Having a main memory of 256MB is
essential for running this application.

3.2 Computation distribution

Both PIII/P4 processors decode instructions to µ-
ops run internally. Figure 6 summarizes the
instruction per cycle (IPC) and the micro-ops per
cycles (UPC) of different platforms obtained with
Vtune™. Even though the 2nd and the 3rd platforms
differ only in CPU frequency, their IPC and UPC are
different due to memory access.

The rest of this section’s analysis is based on the
2nd platform. The computation distribution of running
this LVCSR obtained from Vtune™ is shown in

Figure3. Performanceof VariousSystems

1.11

0.97

0.88

0.76

1.19
1.26

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

500 700 900 1100 1300 1500
Frequency

xR
T

1st Run

2ndRun

platform#1with1MB
L2
platform#1with512KB

Figure 7 and 8 separated by major tasks in the
application. Figure 7 illustrates the execution time
distribution among four major tasks while Figure 8
shows the MIPs distribution. Both graphs shows that
majority of the time and MIPs is spend on Guassian
computation and search.

Figure 4. Performance with Various Main
Memory Szie

0

0.5

1

1.5

2

2.5

128M B 256M B 384M B 512M B

xR
T

1st run

2nd run

Figure 5. CPU Utilization with Various Main
Memory

0%

20%

40%

60%

80%

100%

128MB 256MB 384MB 512MB

1st run

2nd run

Figure 6. IPC/UPC rate of Platforms

0

0.2

0.4

0.6

0.8

1

1.2

Pentium III
550MHz

2MB Cache

Pentium III
866 MHz

Pentium III
1Ghz

Pentium 4
1.5GHz

IPC

UPC

Figure 7. Time Distribution

Gauss computation Search effort

Language Model Operating System (NT)

Figure 8. MIPS Distribution

57%

33%

7%
2%

Gauss computation Search effort

Language Model Operating System (NT)

The most frequently seen computation patterns
observed are ((a-b)^2)*c and log(1+exp(x)). The later
is approximated with a polynomial equation. Both
patterns can be expressed with ADD/SUB then
Multiply instruction sequences. This is different from
the Multiply-ADD/SUB sequences seen in DSP type
applications. Usually during the search a great
percentage of the actual search time is spend by the
Gaussian computation. According to previously
reported analysis, Gaussian computation may stall the
search process due to dependency. Work done by [17]
reports that typically 40%~80% of the total execution
time is due to Gaussian Computation. More recently,
studies have shown that it is not less than 75% [18].
Our engine, without modification, also reports more
than 70% of execution time on Guassian computation.
An optimization is used at the algorithm level that
speculates the result of computation and reuses results
from previously computation. With this optimization

technique we are able to reduce this ratio greatly. It is
worthwhile to note, since the cost of the system idle
process is counted as OS activity, the actual cost of
the language models (include the language look-ahead
model) should be higher than the value reported.

When we compare the time distribution with the
MIPS distribution we found some small discrepancy.
This is because the Gaussian module is composed of
more regular and more inherently parallel
computations while the search effort is more random.
So the time distribution ratio of it is less than the
MIPS distribution ratio. The search effort module,
also called token propagation module, has many
branch and data dependency. Thus, the time
distribution ratio of the search module is larger than
the MIPS distribution ratio. Unfortunately, these two
modules are somewhat interleaved making
parallelizing the Guassian module challenging.

There are also some counters for the specific type
of instructions. Though they are not detailed enough,
some understanding can be obtained. Table 2 lists the
break down of instruction types and corresponding
miss rates. We will discuss the comparison between
LVCSR and other SPEC benchmark programs later.

3.3 Where have all those cycles gone?

We further investigate where have the time been
spend in the program. Again all data are collected on
the 2nd platform using VTune. Figures 9 and 10 show
that about two thirds of the execution cycles are idling
and retiring no instructions. This indicates there may
be many dependency chains in the application. Note
that the maximum number of u-ops can retire each
cycle is 3. Since one instruction may be decoded into
multiple u-ops, the number of cycles where 3
instructions are retired is less than the number of
cycles where 3 u-ops are retired.

Figure 9. Breakdown of IPC

0 i nst r s
r et i r ed

67% 3 i nst r s
r et i r ed

5%

2 i nst r s
r et i r ed

13%

1 i nst r
r et i r ed

15%

Figure 10. Breakdown of UPC

1 u- ops
r et i r ed

10%

2 u- ops
r et i r ed

6%

3 u- ops
r et i r ed

21%

0 u- ops
r et i r ed

63%

There are additional counters in Pentium III
allowing us to further categorize different types of
stalls. Table 1 summarizes the result. The percentage
is ranked among all cycles. Accounting for all cycles
is difficult in an out-of-order processor such as
Pentium III. Execution can proceed during a stall
cycle in some other part of the machine. For example,
when the pipeline has a resource stall, instruction can
continue to be fetched. Similarly, during is a
instruction fetch stall, there are other instructions
being executed in the other part of the pipeline.

Resource related stalled cycles 52%

Instruction fetch stalled cycles 4.5%

Partial stalled cycles 1.5%

Table 1. Stall cycles

Instruction cache misses and ITLB misses cause
instruction fetch stalls mainly. Resource-related stalls
are much higher than instruction fetch stalls and
partial stalls in LVCSR. This is similar to floating
point benchmarks. The resource-related stalls indicate
that there are instructions in the application requiring
the same hardware resources such as register
renaming buffer entries and memory buffer entries
[22]. Branch misprediction recovery and delay in
retiring mispredicted branches also causes resource-
related stalls. Since branch misprediction rate and L2
cache miss rate are not overly high, long dependency
chains in the code may have caused these stalls
cycles.

At the mean time, there is a large percentage
(21%) of the cycles that can retire 3 µ-ops. This
indicates that the there are parallelism computations
in the program.

3.4 Comparison with SPEC CPU2000
benchmarks

Using the same counters accessible through
Vtune™, we collect data for some SPEC CPU2000
benchmarks. Table 2 summarizes the comparison.
These SPEC 2000 benchmarks are compiled with
Microsoft Visual Studio compiler using default

optimization options (-Ox -Zi). Some numbers are not
included if they are small and negligible. As
mentioned before LVCSR does have large memory
requirement and there may have long dependency
chains in the program that need data from critical
loads. We see the program characteristics of LVCSR
speech engine are similar to a typical floating-point
application in the SPEC2000[9].

SPEC 2000 Integer SPEC 2000 FP

lvcsr gcc Gzip eon parser perlbmk vpr mesa art ammp

IPC 0.56 0.41 0.99 0.71 0.57 0.94 0.45 0.64 0.18 0.41Execution
Aggregate

UPC 0.85 0.75 1.21 1.56 0.86 1.36 0.65 1.12 0.23 0.58

Resource
related

52% 44% 27% 16% 44% 15% 60% 23% 88% 74%

Partial
Stall

1.5% 1.1% 1.9% 11% 3.2% 1.0% 8.4%

Stall
cycles

Instruction
Fetch

4.5% 8.5% 1.3% 9.0% 10% 1.6% 1.6%

Branches 10% 22% 19% 14% 21% 21% 17% 11% 14% 9.6%

FP 8.5% 5.2% 8.4% 12% 33%

Instruction
Mixes

SSE 16%

Memory reference/instr. 0.60 0.65 0.40 0.83 0.62 0.51 0.70 0.68 0.58 0.58

Branch mis-prediction 6.4% 7.4% 5.3% 6.1% 5.3% 4.6% 7.9% 2.8% 5.2% 2.3%

L2 instruction
fetch/hundred instr.

0.26 0.2 0.03 0.20 0.06 1.6 0.26 0.27 0.12 0.06

DL1 2.8% 4.3% 7.2% 0.14% 2.8% 1.2% 3.8% 0.78% 15% 4.5%Cache
miss

L2 38% 40% 5.4% 0.27% 35% 6.8% 38% 13% 96% 52%

Table 2. Comparison between LVCSR and SPEC CPU2000 benchmarks

3.5 More detail memory behavior study

As mentioned, besides using VtuneTM we also use
software simulation tools to further study the memory
behavior. With a built-in first level cache in the
SoftSDV’s CPU model, we first skip 66.5 billion
instructions after starting up SoftSDV. We use 1 billion
instructions for warming up cache then collected a 380
million L2 references trace. These traces are used as
input to a trace-driven cache simulator. When
simulating using this trace we use the first 200 million
references to warm the L2 cache.

We first analyze the level 1 cache behavior. The
DL1 has relatively good locality. Its miss rate is
comparable to “ammp” in the SPEC2000 FP
benchmarks. Figure 11 illustrates the cache line
reference frequency for various DL1 cache sizes. In
this figure the x-axis is the number of times a cache
line is referenced before it is replaced. The y-axis is the
percentage of lines among all referenced lines. We also
show the miss rate for each DL1 sizes in the legend.
This behavior is very similar to “ammp”. However the
L2 cache miss rate of LVCSR is higher than “ammp”.
There are other SPEC2000 FP benchmarks which act
very differently from LVCSR and “ammp”.

Figure 12 plots the miss rate verses L2 cache size
for various line sizes. Note this is a log/log plot. We
see a change of miss rate slope after 8MB. The size

requirement is somewhat expected because we know
there are three large data storage spaces used for
acoustic models, language model and search buffer.
Another fact is that our data structure is somewhat
large. Each state has 3 to 4 KB of Gaussian parameters.
During the search each state is visited one by one.
Therefore it is more advantage to have large line sizes.
Figure 4 also shows that every time L2 line size is
doubled we get similar miss rate as having twice the
cache size.

Figure 12. Miss vs. Cache Size for Diff.
Line Sizes

0.001

0.01

0.1

1

0.25 0.5 1 2 4 8 16 32

L2 Cache Size in MB

M
is

s
R

at
e

32B

64B

128B

256B

512B

Figure 13 shows the capacity ratios of the cache
miss with various L2 sizes and L2 line sizes. These
data are collected with very long traces. We first skip
the first 66.5 billion instructions after starting up
SoftSDV. A L1 data cache is built-in with SoftSDV.
We use 1 billion instructions to warm up the L1 data
cache first. L1 data cache is a typical 32KB 4-way set-
associative cache with line size equals to 32B. We then
collect around 400 million references to L2. We use
about half of these traces to warm up and start
collecting statistic after the warm up period. Of traces
used to collect statistic 74% are reads. When L2 cache
size is small, most of the misses are capacity misses.
Very little conflict misses are observed. That may
indicate cache associativity need not to be high if we
have smaller cache for LVCSR. The L2 capacity miss
ratio shows a small drop after the size reaches 16MB.

Figure11. Percent of totalDL1lineref. xtimes

0%

5%

10%

15%

20%

0 1 2 3 4 5 6 7 8 9 10

8kb3.05%

16kb2.61%

32kb2.20%

64kb2.06%

128kb1.91%

0%

20%

40%

60%

80%

100%

32
B

64
B

12
8B

25
6B

51
2B 32
B

64
B

12
8B

25
6B

51
2B 32
B

64
B

12
8B

25
6B

51
2B 32
B

64
B

12
8B

25
6B

51
2B 32
B

64
B

12
8B

25
6B

51
2B 32
B

64
B

12
8B

25
6B

51
2B 32
B

64
B

12
8B

25
6B

51
2B 32
B

64
B

12
8B

25
6B

51
2B

256K 512K 1M 2M 4M 8M 16M 32M

compulsory capacity conflict

When we collected traces, we associated with each
data reference in the trace the corresponding
instruction pointer (IP) address. When we sort these IP
addresses we found about 58 IPs that cause 90% of the
L2 misses. Moreover, one top IP address causes more
than 40% misses (more than 36% of all non-
compulsory misses). Figure 14 shows the distribution
and accumulated miss rate for these 58 IP addresses.
By inserting software prefetch for this one instruction
we are able to improve the overall application
performance.

Figure 14. Miss percentage vs. Top 58 IPs

0%

5%

10%

15%

20%

25%

30%

35%

40%

1 6 11 16 21 26 31 36 41 46 51 56

I P #

%
 o

f
to

ta
l M

is
s

Using traces for cache study is faster but have
limitations. In the future we will interface the full
system simulator with a cycle by cycle timing accurate
memory subsystem model. With that we will be able to
collect performance directly instead of estimating the
performance impact from miss rates.

4. Conclusion

LVCSR systems based on continuous HMM are
gaining usage. We use several tools available to us to
study the general characteristic of a LVCSR developed
by ICRC. Our study indicates that this LVCSR requires
a large number of floating-point computations to
evaluate GMM. Since a HMM state uses a large data
structure (which typically is 3KB~4KB), there is good
data spatial locality. However accesses to language
model and acoustic model are random and thus exhibit
little temporal locality. This may be one of the main
causes of stalled cycles. We also use software
simulation to narrow down on instructions that cause
most of the level 2 cache misses and use software
prefetching to improve performance. Further memory
behavior study on the long trace collected will be
performed.

Acknowledgement

We thank Konrad Lai, Hubert Hum and John Shen
for their discussion and comments. Thanks also to the
anonymous reviewers for their many helpful
suggestions.

4. References

[1] http://www.dragonsys.com

[2] http://www-4.ibm.com/software/speech

[3] http://www.lhs.com/voicexpress

[4] http://www.speech.be.philips.comhttp://simos.sta
nford.edu/

[5] K.Agaram, S.W.Keckler, and D.C.Burger. “A
Characterization of Speech Recognition on
Modern Computer Systems”, 4th IEEE Workshop
on Workload Characterization, at MICRO-34,
December, 2001 , 2001.

[6] http://fife.speech.cs.cmu.edu/sphinx

[7] Qingwei Zhao, Zhiwei Lin, Baosheng Yuan and
Yonghong Yan, “Improvements in search
algorithm for large vocabulary continuous speech
recognition”, ICSLP, Vol.4, October, 2000,
Beijing, pp306-309.

[8] http://developer.intel.com/software/products/vtun
e/index.htm

[9] SPEC CPU2000,
http://www.specbench.org/osg/cpu2000

[10] R. Uhlig et. al., “SoftSDV: A Pre-silicon
Software Development Environment for the IA-
64 Architecture,” Intel Technology Journal, 4th

quarter, 1999.
http://developer.intel.com/technology/itj/q41999/
articles/art_2.htm

[11] R. Haeb-Umbach, D. Geller, and H. Ney.
Improvements in connected digit recognition
using linear discriminant analysis and mixture
densities. In ICASSP, pages 239--242.

[12] L. R. Rabiner, “A Tutorial on Hidden Markov
Models and Selected Applications in Speech
Recognition,” Readings in Speech Recognition,
Kaufmann, 1990, pp. 267-296.

[13] S.Young A review of large-vocabulary
continuous speech recognition. IEEE Signal
Magazine, 1996, Sep, 45-57

[14] X. D. Huang, Y. Ariki, and M. Jack. Hidden
Markov Models for Speech Recognition.
Edinburgh University Press, 1990.

[15] E. L. Bocchieri. Vector quantization for the
efficient computation of continuous density
likelihoods. In ICASSP, pages 692--694.

[16] H. W. Huang, M. Y. Hon, M. Y. Hwang and K.
F. Lee, “A Compartive Study of Discrete,
Semicontinous, and Continuous Hidden Markov
Models,” Computer Speech and Language, 1993,
No. 7, pp. 359-368.

[17] P Beyerlein, et. al., “Hamming distance
approximation for a fast log-likelihood
computation for mixture densities”. Proc. of the
European Conf. on Speech Communication and
Technology, Madrid, Spain, vol. II, pp.1083-
1086.

[18] S. Ortmanns, et. al., “Language-model look-ahead
for large vocabulary speech recognition”, ICSLP,
1996, pp2095-2098.

[19] Y.Yan, X. Wu, J. Schalkwyk, R. Cole.
“Development of CSLU LVCSR: The 1997 D
ARPA HUB4 Evaluation System”. In
Proceedings DARPA '98 BNTUW, 1998

[20] Intel Corporation, Intel Integrated Performance
Primitives,
http://developer.intel.com/software/products/ipp

[21] Intel Corporation, Intel IA-32 architecture
software developer’s manual,
http://developer.intel.com/design/pentium4/manu
als

[22] D. Bhandarkar and J. Ding, “Performance
Characterization of Pentium® Pro Processor,”
Proc. of Symp. On High Performance Computer
Architecture, Feb 1-5, 1997, San Antonio pages

[23] Yong Luo, Kirk W. Cameron, Josep Torrellas,
and Yan Solihin, “Performance modeling using
Hardware Performance Counters”, Tutorial,
HPCA-6, Jan 2000, Toulouse, France.

Comparison of Memory System Behavior in Java and Non-Java
Commercial Workloads

Morris Marden1, Shih-Lien Lu1, Konrad Lai1, Mikko Lipasti2

1Microprocessor Research, Intel Labs

Intel Corporation
Hillsboro, OR 97124

{morris.marden, shih-lien.lu, konrad.lai}@intel.com

2Dept. of Electrical and Computer Engineering
University of Wisconsin

Madison, WI 53706
mikko@ece.wisc.edu

Abstract

In this paper, we compare the memory system be-
havior of Perl and Java versions of SPECweb99. We
find that the memory behaviors of these two versions
of SPECweb99 are very different. The Java version
incurs 213% more cache misses than the Perl version
for a 1 MB second level cache and 179% more misses
for a 16 MB cache. Much of this increase is due to
true sharing, which is 222% to 415% higher in the
Java workload than in Perl. We find that for 1 MB
caches, the exclusive state is effective, since it is able
to remove 24% and 61% of the write upgrades for
Perl and Java respectively. However, for 8 MB
caches, the exclusive state only removes 1% to 5% of
the upgrades. Also, it is important to have an efficient
mechanism for cache to cache transfers, since 71% to
87% of the second level cache misses hit a modified
line in another processor’s cache when using 8 MB
second level caches. Our early results show that proc-
essor consistency can improve the performance of
Perl and Java SPECweb99 by 14% and 22% over
sequential consistency. Surprisingly, we find that re-
moving all of the serializations in processor consis-
tency degrades the performance of the Java workload
by 11%.

1. Introduction

With the growth of the Internet and the World-

Wide Web, there has been a dramatic increase in the
number of types and styles of programs that com-
puters are being required to run. Traditionally, soft-
ware engineers wrote programs in high-level lan-
guages, like C and C++, which then were compiled
into assembly language long before users ran the pro-
grams. Later, scripting languages were developed,
such as Perl, which interpret each line of code of a
program at runtime. Recently, dynamic runtime com-
piled languages have gained in popularity. These lan-
guages, including Java and .Net, are compiled into an
intermediate machine language, which is independent
of all machines that it is run on. When the user runs

these programs, the Virtual Machine compiles these
programs on demand for the machine that they run on.
Each of these program styles are common today and
place different demands on the hardware of the com-
puter. Thus, today’s computers must be versatile and
perform well with very different program behaviors.

While Java is now a few years old, its memory
system behavior is still somewhat a mystery. Re-
cently, there have been a number of papers [2, 4, 9-12,
16, 18-19] that have studied this behavior. However,
few studies have compared the behavior of Java work-
loads to other workloads. Luo and John [12] com-
pared VolanoMark, a Java chat room server, and
SPECjbb2000, a java server-side business benchmark
that models a warehouse system, to SPECint2000, a
general processor benchmark. Cain et al. [2] com-
pared a Java implementation of TPC-W, an online
store benchmark, and SPECjbb2000, to SPECweb99,
an ISP web server benchmark, and SPECint95. Lepak
et al. [10] study the amount of silent stores in a Java
implementation of TPC-W, SPECjbb2000, TPC-B (an
online transactions database workload), and the
SPLASH-2 benchmark suite (a suite of scientific
workloads). In these three studies, the Java and non-
Java workloads are very different, so one cannot com-
pare the behaviors of the two sets of workloads. In
this paper, we compare the memory system behavior
of SPECweb99, which uses Perl, to a version that we
ported to Java. In addition, of the earlier works of
Java workloads, only Cain et al. [2] and Lepak et al.
[10] studied the impact of multiprocessor behavior on
memory systems. We study the memory system be-
havior of a four processor machine in this paper.

Even though there have been a large number of
studies on memory consistency models, few studies
measure their performance differences. The studies
that measure performance include [1, 6, 13-14, 17].
Even fewer studies measure performance of consis-
tency models for commercial workloads. Of the
above papers, only Martin et al. [13] studied this. In
this paper, we include early results of the performance
of simple implementations of sequential and processor
consistency.

2. Methodology

To compare the memory behavior of Java and

non-Java workloads, we used the SPECweb99
benchmark [20], which models a server for the home-
pages of users of an ISP. SPECweb99 includes re-
quests for static and dynamic web pages, keep alive
and persistent connections, and user targeted rotating
advertisements that use cookies. We ported this
benchmark from a Perl CGI to a Java Servlet. The
Java Servlet performs the same work as the Perl CGI,
except that we use shared memory based locks instead
of file-based locks in the Servlet. Shared memory
locks are more efficient than file locks, since they do
not require intervention by the operating system, file
system, and disks. However, Perl scripts do not have
the ability to use shared memory between processes,
so the original Perl implementation is forced to use
file-based locks. We believe that this distinction is
important, since shared memory locks can have a
great impact on memory behavior. Table 1 lists the
software that we used for the workload.

To measure the behavior of the memory system,
we use the Simics full system simulator [21]. Simics
is a functional simulator that simulates multiprocessor
systems, using unmodified binary programs. To
measure memory behavior, we wrote a memory sys-
tem model that simulates a two level cache hierarchy
and a cycle-accurate multiprocessor split-transaction
bus. The bus protocols in our memory model are
based on the Pentium II MESI protocol [7] and are
tuned for characteristics of processors a few years in
the future. Simics sends each memory request to our
memory model, which analyzes the effects of the re-
quests and sends the timing information back to Sim-
ics. To prevent our results from being skewed, the
memory model detects and removes instruction and
data read accesses in idle and spin loops. Our mem-
ory model also classifies the causes of cache misses
and uses Dubois’ definitions of sharing [5] to compute
the number of true and false sharing misses.

Table 1 shows the configurations that we used for
the simulated system. In our experiments, we varied
the second level cache line size and second level
cache size. The first level cache used the same sized
lines as the second level cache. The memory model
maintains inclusion between the first level caches and
the second level cache, and maintains exclusion be-
tween the first level caches (so that self modified code
will be handled correctly). We also measured the dif-
ferences between simple implementations of sequen-
tial and processor consistency. Under sequential con-
sistency, the processor can only execute new instruc-

tions when the node has completed all outstanding
memory requests. However, under processor consis-
tency, the processor does not need to stall for cache
misses on writes unless there is a cache miss to the
line for a read. Our implementations of these consis-
tency models are discussed in more detail in Section 4.

SPECweb99 is composed of two parts: a client
and a server. The client emulates user requests for
static and dynamic web pages from the web server.
The server handles these requests and sends responses
back to the client. Since we are only interested in the
behavior of the server (the system under test or SUT),
we simulated the client and server on separate ma-
chines and used Simics’ network capability to simu-
late a network between the two simulated machines.
We then collected measurements for the behavior of
the server machine alone. Figure 1 shows a diagram
of the simulated machines.

Operating System
Web Server:
Perl:
Java Server:
Java:

Red Hat Linux 6.2
Apache 1.3.20
Perl 5.005_03
Apache JServ 1.1.2
6XQ�-DYD�6'.������� �

Processor:
of processors:
Ratio processor to bus frequency:
Main memory:
Minimum memory access latency:
Consistency model:

Intel Pentium II
4
10:1
1 GB
120 processor cycles
Sequential, Processor

L2 cache read/write ports (total):
L2 cache associativity:
L2 cache line size:
L2 cache size:
L2 cache latency:
L1 D-cache read ports:
L1 D-cache write ports:
L1 cache associativity:
L1 cache line size:
L1 cache size (I & D, each):
L1 cache latency:

1
4
64 B, 128 B, 512 B
1 MB, 8 MB, 16 MB
6 processor cycles
4
2
1
same as L2 cache
128 KB
0 cycles (i.e.,
 scheduled in pipeline)

Table 1: Simulated server configuration

Figure 1: Diagram of simulated machines setup

To obtain reliable steady state results, we first
warmed up each of the workloads for a few minutes
of simulated time without our memory model (it
would be too slow to do this with the memory model).
This ensures that our simulator will measure the
steady state behavior of the workload. We tuned the
load of the workloads to maximize the utilization of
the processors. If the load is too high, then the system
will spend too much time handling disk accesses and
the processors will then be idle while waiting for the
accesses to complete. On the other hand, if the load is
too low, then there will not be enough work for the
processors. In our simulations, we set load of Java
SPECweb99 to be the maximum that the client could
produce, which was 33% higher than the optimal load
of the Perl version.

After warming up the workloads without the
memory module, we then ran the workloads with the
memory module to collect results. After the first
simulated processor (of the server) has executed 250
million instructions, the memory model cleared all of
the measurements collected so far. This prevents our
results from being skewed due to initial behavior of
the simulated system. For example, at the beginning
of the simulation, the simulated caches are completely
empty, so most of the misses will be compulsory
misses. However, when the workload reaches steady
state, there will be few compulsory misses. After re-
setting the measurements, the memory model then
measures the memory behavior of the server until the
first processor has executed another one billion in-
structions.

3. Sequential Consistency Results

3.1. Miss Rate
Figure 2 shows the miss rates of the second level

caches for the workloads and why these misses occur.
Our results show that our Java version of SPECweb99
has a higher miss rate than the Perl version. The Java
implementation has a larger working set than the Perl,
since the Java version suffers more capacity and con-
flict misses, especially with relatively small second
level caches. The Java Servlet also has much more
true sharing misses than the Perl CGI, much of which
is due to the shared memory locks. In addition, Java
SPECweb99 also incurs much more false sharing
misses than Perl, especially at large line sizes.

The sharing behavior of the workloads varies
greatly with cache configuration. In relatively small

second level caches, the large number of capacity and
conflict misses reduce the number of sharing misses,
since it is less likely that a cache line will be in a re-
mote cache when a processor wishes to write to the
line. The number of true sharing misses greatly re-
duces with line size, especially for the Java implemen-
tation. We believe that this occurs since reads and
writes are clustered in adjacent cache lines (due to
spatial locality). Therefore, when two or more proces-
sors share data, a processor will invalidate a large
number of consecutive lines in other processors’
caches when it writes the data. Later, when the other
processors access this data, the large cache lines pre-
fetch more of this data on each access, thereby reduc-
ing the number of cache misses. In addition, this re-
duction in true sharing misses is larger than the in-
crease in false sharing misses, indicating that 512 byte
line sizes are useful. Our results also show that in-
creasing the line size is more effective in reducing the
miss rate than increasing the size of the cache. In the
case of the Java workload, the miss rate actually be-
comes worse when one increases the size of the cache,
since it is more likely that shared data will be in a re-
mote cache.

0.00%

0.05%

0.10%

0.15%

0.20%

0.25%

0.30%

0.35%

0.40%

0.45%

0.50%

0.55%

P-1
,6

4

P-8
,6

4

P-8
,1

28

P-8
,5

12

P-1
6,

12
8

J-
1,

64

J-
8,

64

J-
8,

12
8

J-
8,

51
2

J-
16

,1
28

M
is

s
ra

te
 p

er
 in

st
ru

ct
io

n

False Share

True Share

Cap/Conf

Cold Miss

Figure 2: Cache miss rates
Note that X-Y,Z stands for X workload (P for Perl, J for
Java), Y MB sized L2 cache, with Z byte lines.

3.2. Remote Cache Hits
To better understand the sharing behavior of the

caches, Figures 3a shows the number of cache misses
for data reads that hit in one or more of the other proc-
essors’ caches. In the Perl version, we see that more
than half of the reads hit in a remote cache. For rela-
tively large caches, most of the remote read hits are to
lines in the modified state, indicating that it is impor-
tant to implement an efficient cache to cache transfer
mechanism for modified lines. The Java port has an
even larger number of remote read hits to the modified
state, in part due to the shared memory lock.

The behavior of write misses is similar to that of
read misses, as shown in Figure 3b. In the Perl ver-
sion, there are more write misses that hit in remote
modified lines than in the case of read misses. How-
ever, there are much fewer write misses that hit in the
shared state in a remote cache than for read misses. In
contrast, in the Java version, the differences in the
number of write misses and read misses that hit in
remote modified and shared lines varies based on the
line size. One reason that the Java version has more
write misses that hit in remote caches in the shared
state is that under a highly contented shared memory
lock, each processor frequently reads the value of the
lock to see if it can acquire the lock. Therefore, the
lock will often be in the shared state in a processor’s
cache when another processor writes to the lock to
acquire or release the lock.

3.3. Exclusive State in Shared
Memory Multiprocessors

The exclusive state of the MESI protocol is de-
signed to improve cache performance reducing the
number of invalidations that processors use for write
upgrades. Recent studies have debated the effective-
ness of the exclusive state. Some studies have argued
that the exclusive state is not useful, since they found
that there are few writes that hit in the exclusive state
[3, 8]. However, we believe that a better measure for
deciding the usefulness of the exclusive state is the
number of lines that enter the cache in the exclusive
state and the number of times that the processors can
perform silent upgrades instead of invalidations to go
from shared to modified. Most writes hit in cache
lines in the modified state due to spatial and temporal
locality. The exclusive state is not aimed at improving
the performance of writes that hit in the cache in the
modified state. Using this method, Cain et al. [2]
found that the exclusive state is useful for reducing the
number of invalidations for write upgrades.

Figure 4 shows that most lines enter the cache in
shared state on read misses. The number of shared
lines increase with cache size and line size, since it is

0%

20%

40%

60%

80%

100%

P-1
,6

4

P-8
,6

4

P-8
,1

28

P-8
,5

12

P-1
6,

12
8

J-
1,

64

J-
8,

64

J-
8,

12
8

J-
8,

51
2

J-
16

,1
28

P
er

ce
n

t
o

f
re

ad
 m

is
se

s

Miss

S

E

M

(a)

0%

20%

40%

60%

80%

100%

P-1
,6

4

P-8
,6

4

P-8
,1

28

P-8
,5

12

P-1
6,

12
8

J-
1,

64

J-
8,

64

J-
8,

12
8

J-
8,

51
2

J-
16

,1
28

P
er

ce
n

t
o

f
w

ri
te

 m
is

se
s

Miss

S

E

M

(b)

Figure 3: Misses that hit in remote caches
(a) Read misses
(b) Write misses

Note that X-Y,Z stands for X workload (P for Perl, J for
Java), Y MB sized L2 cache, with Z byte lines.

0%

20%

40%

60%

80%

100%

P-1
,6

4

P-8
,6

4

P-8
,1

28

P-8
,5

12

P-1
6,

12
8

J-
1,

64

J-
8,

64

J-
8,

12
8

J-
8,

51
2

J-
16

,1
28

P
er

ce
n

t
o

f
re

ad
 m

is
se

s

I->S

I->E

Figure 4: State that lines for read misses enter

Note that X-Y,Z stands for X workload (P for Perl, J for
Java), Y MB sized L2 cache, with Z byte lines.

more likely that the line will be present in another
processor’s cache. Here, we see that for relatively
large caches, there are more exclusive lines in the Perl
version than Java. We also see that the exclusive state
is more sensitive to cache line size in the Perl imple-
mentation than Java. However, for small caches, the
exclusive state is used more in the Java Servlet than
the Perl CGI.

In Figure 5, we see that most lines that are in the
exclusive state never change to the modified or shared
states. In the Perl implementation of SPECweb99, we
see that more exclusive lines are downgraded to
shared than those that are upgraded to modified state.
However, in the Java port, more exclusive lines
change to modified than shared, indicating that the
exclusive state may be more useful in the Java version
than in the Perl version.

We can see the overall impact of the exclusive

state by looking at the origins of modified lines in the
caches, shown in Figure 6. For each pair of bars in the
above graphs, the first bar includes all sources of
modified lines and the second bar includes only the
write upgrades. First, we see that more than half of
the lines become modified on write misses rather than
upgrades. Interestingly enough, the number of modi-
fied lines that enter the cache on misses is highly de-
pendent on the cache size and line size for Perl, but is
mostly independent of the cache configuration for
Java. A reason for this is that most of the write misses
are due to the sharing in the Java version, which is
largely from the shared memory lock. For relatively
small caches, there are a large number of upgrades
from exclusive to modified. In addition, for small
caches, the Java implementation performs more up-
grades from exclusive to modified than the Perl ver-
sion. In particular, 62% of the upgrades are from the
exclusive state in the Java Servlet, but only 24% of the
upgrades are silent for the Perl CGI. However, for
relatively large caches, there are few upgrades from
the exclusive state, so it is less useful.

3.4. Dirty Lines
Figure 7 shows the MESI transitions for dirty

cache lines. Note that the M->M is for modified lines
that never leave the modified state. First, we see that
a large number of modified lines downgrade to shared
state due to another processor’s read. As in the case
of exclusive lines, we see that the behavior of the Perl
version is highly dependent on the cache configura-
tion, whereas the Java version is mostly independent
of the configuration.

0%

20%

40%

60%

80%

100%

P-1
,6

4

P-8
,6

4

P-8
,1

28

P-8
,5

12

P-1
6,

12
8

J-
1,

64

J-
8,

64

J-
8,

12
8

J-
8,

51
2

J-
16

,1
28

P
er

ce
n

t
o

f
ex

cl
u

si
ve

 li
n

es
E->I

E->M

E->S

Figure 5: Transitions leaving the exclusive state

Note that X-Y,Z stands for X workload (P for Perl, J for
Java), Y MB sized L2 cache, with Z byte lines.

0%

20%

40%

60%

80%

100%

P-1
,6

4

P-8
,6

4

P-8
,1

28

P-8
,5

12

P-1
6,

12
8

J-
1,

64

J-
8,

64

J-
8,

12
8

J-
8,

51
2

J-
16

,1
28 Cache

Config

P
er

ce
n

t
m

o
d

if
ie

d
 li

n
es S->M

E->M

I->M

Figure 6: Sources of modified lines
Note that in each pair of bars, the first bar includes all sources of modified lines and the second bar only
includes lines that upgraded from shared or exclusive state.

Similarly, we see that this is also true for the
number of modified lines that are removed from the
cache, as seen in Figure 8. Here, we see that about
40% to 65% of the lines that are removed from the
cache are dirty, indicating that it is important to have
an efficient mechanism for handling dirty removals.
We also see that the number of shared lines increase
with the cache size and line size, since it is more likely
that a line will be shared as the caches become larger.
Surprisingly, we see that the exclusive lines have the
opposite behavior of the modified lines. In particular,
the number of exclusive lines removed from the cache
is relatively constant in the Perl version, but is de-
pendent on the cache configuration in the Java imple-
mentation. This trend is also the opposite of the num-
ber of lines that enter the cache in exclusive state on
read misses.

3.5. Stall Cycles
We show the number of stall cycles that each in-

struction has in Figure 9. Note that write back stalls
occur when a processor has a second level cache miss
after it has started performing a write back, so the
processor cannot start handling the miss until the write
back completes. In addition, on second level cache
misses, the latency of the caches are included in the
number of cycles of stall for the miss and not counted
under second level cache hits. The restart processor
stalls refer to a one processor cycle stall that occurs
after the processor finishes handling a series of one or
more first level cache misses, to model the overhead
of restarting a processor after a cache miss. Lastly,
the miscellaneous stall cycles contain the remaining
stalls that the processors suffer, including first level
data cache hazards and negative acknowledgements.

First, we see that the number of stall cycles is
much larger for Java SPECweb99 than Perl, due to a
larger cache miss rate. Note that the load of the Java

version is higher than the Perl version, so it is han-
dling more transactions for the same amount of time.
We also see that see that for both the Perl and Java
versions, the number of stall cycles dramatically drops
when one increases the cache from 1 MB to 8 MB and
when one increases the line size from 64 bytes to 128
bytes. Our results show that the stall cycles due to
instruction misses and write backs quickly disappear

0%

20%

40%

60%

80%

100%

P-1
,6

4

P-8
,6

4

P-8
,1

28

P-8
,5

12

P-1
6,

12
8

J-
1,

64

J-
8,

64

J-
8,

12
8

J-
8,

51
2

J-
16

,1
28

P
er

ce
n

t
o

f
m

o
d

if
ie

d
 li

n
es

M->M

M->I

M->S

0%

20%

40%

60%

80%

100%

P-1
,6

4

P-8
,6

4

P-8
,1

28

P-8
,5

12

P-1
6,

12
8

J-
1,

64

J-
8,

64

J-
8,

12
8

J-
8,

51
2

J-
16

,1
28

P
er

ce
n

t
o

f
re

m
o

ve
d

 li
n

es

M->I

S->I

E->I

Figure 7: Transitions from modified lines Figure 8: Lines removed from the cache

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

P-1
,6

4

P-8
,6

4

P-8
,1

28

P-8
,5

12

P-1
6,

12
8

J-
1,

64

J-
8,

64

J-
8,

12
8

J-
8,

51
2

J-
16

,1
28

S
ta

ll
cy

cl
es

 p
er

 in
st

ru
ct

io
n

Misc

Write back

Instruct miss

Restart proc

Upgrade miss

Write miss

Read miss

L2 Hit, Data

L2 Hit, Inst

Figure 9: Stall cycles per instruction
Note that X-Y,Z stands for X workload (P for Perl, J for
Java), Y MB sized L2 cache, with Z byte lines.

when one increases the cache size to 8 MB. However,
in the Perl version, the number of stall cycles does not
change significantly when one increases the cache size
to 16 MB or the line size to 512 bytes. In the Java
implementation, though, the number of stalls decrease
dramatically again when one increases the line size to
512 bytes. Surprisingly, in the Java version the stalls
increase when one increases the cache size to 16 MB,
due to an increase in the number of true sharing
misses.

4. Processor Consistency

4.1. Implementation
To better understand the impact of consistency

models on commercial workloads and whether consis-
tency models warrant further study, we added simple
implementations of sequential and processor consis-
tency to our memory model. Under sequential consis-
tency, all memory operations must appear to occur in
the same order. For example, it is illegal for one
processor to observe that a store occurs before a load
and another processor to observe that the write occurs
after the load1. To this end, our implementation of
sequential consistency stalls each processor until all
memory accesses complete for an instruction. By
stalling the processor until all accesses complete, the
processor cannot observe its own accesses before any
other processor, since the accesses will have been
broadcast over the bus.

Processor consistency relaxes memory ordering
by allowing a processor to observe write to read order-
ing in a different order than another processor. In the
previous example, processor consistency allows the
first processor to observe the store before the load,
even though the second processor observes the store
after the load. Note that to ensure that programs work
correctly, programmers may need to explicitly add
serializations to their programs to ensure that a par-
ticular ordering of operations occur. In our simple
implementation, under processor consistency, the
processor stalls when a read miss occurs, but does not
normally stall when a write miss occurs. Note that our
simple implementation does not assign higher priority
to reads than writes. Therefore, to avoid starvation,
our implementation only allows there to be a maxi-
mum of 31 outstanding write misses, without stalling
the processor. When the processor has more than 31
outstanding writes misses, it must stall until some of

1Note that it is legal for the load and store be per-
formed in a different order with respect to different
processors, as long as the two processors appear to
observe that the operations occur in the same order.

the misses complete and there are only 31 pending
write misses.

4.2. Results
In Figure 10, we show the second level cache

miss rates for four different test cases for each work-
load. In the first test case, the simulated system uses
sequential consistency with 8 MB second level caches
and 128 byte cache lines (from Section 3). For the
second case, the simulated system uses processor con-
sistency with 8 MB second level cache with 128 bytes.
The third test case shows the miss rate of a system that
uses processor consistency, but is somehow able to
ignore serializations and does not need to enforce the
ordering that the programmer specified (this is similar
to [15]). In the last test case, we show the miss rate of
a system with sequential consistency, 8 MB second
level caches, and 512 byte lines, which had the highest
performance of all the sequential consistency cases (as
seen in Section 3).

In the case of the Perl version of SPECweb99, we
see that the miss rate of the system with processor
consistency is slightly higher the system with sequen-
tial consistency. When a system with processor con-
sistency does not need to perform serializations, the
false sharing misses disappear.

0.00%

0.02%

0.04%

0.06%

0.08%

0.10%

0.12%

0.14%

0.16%

0.18%

P-s
-b

as
e

P-p
-s

er
ial

P-p
-n

o
s

P-s
-b

es
t

J-
s-

ba
se

J-
p-

se
ria

l

J-
p-

no
 s

J-
s-

be
st

M
is

s
ra

te
 p

er
 in

st
ru

ct
io

n

False Share

True Share

Cap/Conf

Cold Miss

Figure 10: Cache miss rates for consistency models

X-s-base: baseline sequential consistency (8MB, 128 B)
X-p-serial: processor consistency with serializations
X-p-no s: processor consistency without serializations
X-s-best: sequential consistency with the highest
 performance cache configuration (8 MB, 512 B)

Our results show that the interaction between the
consistency model and miss rates is different for our
Java implementation than Perl. In particular, we see
that the number of sharing misses is smaller for proc-
essor consistency than sequential consistency. Sur-
prisingly, when the system with processor consistency
does not need to perform serializations, the number of
sharing misses increase, such that the overall miss rate
is 10% higher than in the case of sequential consis-
tency. We believe that this occurs because there are
some cases in which the serialization enforces that
only one processor can use a cache line at a time.
When the serialization is removed, then two or more
processors use the cache lines at once, so they fre-
quently steal the lines from each other before any of
them can finish working with the line, increasing the
amount of sharing.

Table 2 shows the number of serializations that
occur in each workload. The processors do not need
to add a memory barrier each time that they reach a
serialization point. In particular, if there are no out-
standing cache misses when a processor reaches a
serialization point, then it does not need to insert a
memory barrier. In addition, since our implementa-
tion of processor consistency does not prioritize reads
over writes, if the last cache miss was for a read, then
the processor does not need to add a memory barrier,
since the processor will be stalled until all of the out-
standing cache misses complete anyway. Note that
due to current limitations in our simulator, we were
not able to detect all serialization points for the Perl
workload. Surprisingly, the processor does not need
to add a memory barrier at most serialization points.

Figure 11 shows the number of stall cycles occur
for each instruction for the four cases of memory con-
sistency. The decrease in the number of stall cycles of
the test cycles over the baseline (sequential consis-
tency with 8 MB cache and 128 byte lines) is shown
in Table 3. We see that adding processor consistency
reduces the number of stall cycles for second level
cache data hits, write misses, and upgrade misses by
about 20% each, for the Perl version. Overall, the
reductions in stalls create a respectable 13.68% overall
improvement, which is much larger improvement than
if one increases the cache line size to 512 bytes for
sequential consistency. While removing the serializa-
tion points from processor consistency only improves
the performance by another 2%, this shows that even a
small number of serializations can have a significant
impact on performance.

Our results that show that the Java version of
SPECweb99 benefits from processor consistency
more than the Perl version. In the Java version, the
number of stalls for write misses and upgrade misses
decrease by 47% and 43% respectively. However, the
number of stall cycles for second level cache data hits

decrease by only 2%. The reduction in stall cycles
yields an overall 22.2% improvement, which is a little
better than the improvement from increasing the cache
line size to 512 bytes for the sequential consistency.
Surprisingly, removing the serializations actually
worsens the performance of the performance of the
workload by 11%. The number of stall cycles for sec-
ond level data misses, data read misses, write misses,
and upgrade misses each increase by 10% to 16%. As

Workload Memory Barriers
Inserted

Serialization
Points

Perl 22 ?
Java 237 28,109
Table 2: Number of serializations

0

0.025

0.05

0.075

0.1

0.125

0.15

0.175

0.2

0.225

0.25

P-s
-b

as
e

P-p
-s

er
ial

P-p
-n

o
s

P-s
-b

es
t

J-
s-

ba
se

J-
p-

se
ria

l

J-
p-

no
 s

J-
s-

be
st

S
ta

ll
cy

cl
es

 p
er

 in
st

ru
ct

io
n

Misc

Write back

Inst miss

Restart proc

Upgrade miss

Write miss

Read miss

L2 Hit, Data

L2 Hit, Inst

Figure 11: Stall cycles for consistency models

X-s-base: baseline sequential consistency (8MB, 128 B)
X-p-serial: processor consistency with serializations
X-p-no s: processor consistency without serializations
X-s-best: sequential consistency with the highest
 performance cache configuration (8 MB, 512 B)

 Perl
Improve

Java
Improve

Processor, serialization 13.68% 22.20%
Processor, no serialization 15.55% 13.43%
Sequential, best caches 3.38% 20.24%
Table 3: Decrease in stall cycles over baseline

mentioned before, the second level cache miss rate
increases by 10% when the serializations are removed.
Note however that even though the cache miss rate of
processor consistency without serialization is higher
than that of the baseline sequential consistency, it still
manages to perform 13.43% better than sequential
consistency.

5. Conclusion

In this work, using a functional execution driven

full system simulator and a detailed memory model,
we show that the memory system behavior of Java
workloads is very different from that of Perl work-
loads. We find that our Java implementation of
SPECweb99 suffers 169% to 213% more cache
misses than the original Perl version.

Our results reveal several means for improving
performance for both Perl and Java SPECweb99.
First, for relatively large caches, increasing the line
size is more effective for reducing the cache miss rates
than increasing the size of the cache, even with very
long line sizes. In addition, we find that when using
relatively small caches (i.e., 1 MB second level
caches), the exclusive state is effective at reducing
stalls for write upgrades, by removing 24% of the up-
grades for Perl and 61% of the upgrades for Java.
However, the exclusive state is less useful for multi-
processor workloads with relatively large caches and
is only able to remove about 1% to 5% of the up-
grades. Note, however, that while the exclusive state
is less useful for large caches in multiprocessor work-
loads, it is still important in the case of single proces-
sor workloads. Third, our simulations show that it is
important to have an efficient cache to cache transfer
mechanism for modified lines. For relatively large
lines, 71% to 87% of the second level cache misses hit
a modified line in another processor’ s cache for both
the Java and Perl implementations of SPECweb99.
Lastly, we find that relaxing the consistency model is
effective at reducing the number of cycles that instruc-
tions are stalled and warrants further research. Our
early results of consistency models show that the Perl
CGI and the Java Servlet can improve performance by
13.68% and 22.2% by using processor consistency
instead of sequential consistency. These results also
show that if one attempts to optimize processor con-
sistency by removing serialization points, one must be
careful about which serialization points are removed.
If one removes the wrong serializations, then the
caches may suffer more cache misses, degrading over-
all performance.

Acknowledgments

We thank Shih-Chang Lai, Trung Diep, and the

Virtutech support team for their valuable help with
Simics. We wish to thank Yongjoon Lee for helping
with the initial memory model. We also thank Harold
Cain for the initial motivation for this work. This
work was supported in part by NSF Grants CCR-
0073440, CCR-0083126, and EIA-0103670.

References

[1] S. Adve, V. Pai, P. Ranganathan. “Recent Ad-
vances in Memory Consistency Models for
Hardware Shared-Memory Systems.” In Pro-
ceedings of the IEEE: Special Issue on Distrib-
uted Shared Memory Systems, pages 445-455.
March 1999.

[2] H. Cain, R. Rajwar, M. Marden and M. Lipasti.
“An Architectural Evaluation of Java TPC-W.”
In Proceedings of The Seventh International
Symposium on High-Performance Computer Ar-
chitecture (HPCA-VII), January 2001.

[3] Q. Cao, P. Trancoso, J. Larriba-Pey, J. Torrellas,
R. Knighten, and Y. Won. “Detailed Characteri-
zation of a Quad Pentium Pro Server Running
TPC-D.” In Proceedings of the Third Interna-
tional Symposium on High-Performance Com-
puter Architecture (HPCA-III), February 1997.

[4] S. Dieckmann and U. Hölzle. “A Study of the
Allocation Behavior of the SPECjvm98 Java
Benchmarks.” In Proceedings of the European
Conference on Object-Oriented Programming
(ECOOP’99), June 1999.

[5] M. Dubois, J. Skeppstedt, L. Ricciulli, K.
Ramaurthy, and P. Stenström. “The Detection
and Elimination of Useless Misses in Multiproc-
essors.” In Proceedings of the 20th Annual In-
ternational Symposium on Computer Architec-
ture (ISCA 20), May 1993.

[6] K. Gharachorloo, A. Gupta, and J. Hennessy.
“Performance Evaluation of Memory Consis-
tency Models for Shared-Memory Multiproces-
sors.” In Proceedings of the Fourth Interna-
tional Conference on Architectural Support for
Programming Languages and Operating Sys-
tems (ASPLOS-IV), 1991.

[7] Intel Corporation. Pentium Pro Family Devel-
oper’s Manual, Volume 1: Specification, 1996.

[8] K. Keeton, D. Patterson, Y. He, R. Raphael, and
W. Baker. “Performance Characterization of a
Quad Pentium Pro SMP using OLTP Work-
loads.” In Proceedings of the 25th Annual Inter-
national Symposium on Computer Architecture
(ISCA 25), June 1998.

[9] J. Kim and Y. Hsu. “Memory System Behavior
of Java Programs: Methodology and Analysis.”
In Proceedings of the 2000 International Con-
ference on Measurement & Modeling of Com-
puter Systems (SIGMETRICS 2000), June 2000.

[10] K. Lepak, G. Bell, and M. Lipasti. “Silent
Stores and Store Value Locality.” In IEEE
Transactions on Computers, Vol. 50, No. 11,
November 2001.

[11] T. Li, L. John, N. Vijaykrishnan, A. Sivasubra-
maniam, J. Sabarinathan and A. Murthy. “Using
Complete System Simulation to Characterize
SPECjvm98 Benchmarks.” In Proceedings of
ACM International Conference on Supercomput-
ing (ICS 2000), May 2000.

[12] Y. Luo and L. John. “Workload Characterization
of Multithreaded Java Servers.” In Proceedings
of the 2001 IEEE International Symposium on
Performance Analysis of Systems and Software
(ISPASS 2001), April 2001.

[13] M. Martin, D. Sorin, H. Cain, M. Hill, and M.
Lipasti. “Correctly Implementing Value Predic-
tion in Microprocessors that Support Multi-
threading or Multiprocessing.” In 34th Annual
International Symposium on Microarchitecture
(MICRO-34), December 2001.

[14] V. Pai, O. Ranganathan, S. Adve and, T. Harton.
“An Evaluation of Memory Consistency Models
for Shared-Memory Systems with ILP Proces-
sors.” In Proceedings of the Seventh Interna-
tional Conference on Architectural Support for
Programming Languages and Operating Sys-
tems (ASPLOS-VII), 1996.

[15] R. Rajwar and J. Goodman. “Speculative Lock
Elision: Enabling Highly Concurrent Multi-
threaded Execution.” In Proceedings of the 34th
International Symposium on Microarchitecture
(MICRO-34), December 2001.

[16] R. Radhakrishnan, N. Vijaykrishnan, L. John,
and A. Sivasubramaniam. “Architectural Issues
in Java Runtime Systems.” In Proceedings of
the Sixth International Symposium on High Per-
formance Computer Architecture (HPCA-VI),
January 2000.

[17] P. Ranganathan, V. Pai, and S. Adve. “Using
Speculative Retirement and Larger Instruction
Windows to Narrow the Performance Gap be-
tween Memory Consistency Models.” In Pro-
ceedings of the Ninth Symposium on Parallel Al-
gorithms and Architecture (SPAA-9), June 1997.

[18] B. Rychlik and J. Shen. “Characterization of
Value Locality in Java Programs.” In Proceed-
ings of the Workshop on Workload Characteri-
zation, ICCD, September 2000.

[19] Y. Shuf, M. Serrano, M. Gupta, and J. Singh.
“Characterizing the Memory Behavior of Java
Workloads: A Structured View and Opportuni-
ties for Optimizations.” In Proceedings of the
2001 International Conference on Measurement
& Modeling of Computer Systems (SIGMET-
RICS 2001), June 2001.

[20] Systems Performance Evaluation Cooperative.
SPEC Benchmarks. http://www.spec.org.

[21] Virtutech Corporation. Simics Full System
Simulator. Information available at
http://www.simics.com.

Characterizing TPC-H on a Clustered Database Engine from the
OS Perspective

Yanyong Zhangy, Jianyong Zhangy, Anand Sivasubramaniamy, Chun Liuy, Hubertus Frankez

y Department of Computer Science & Engineering z IBM T. J. Watson Research Center
The Pennsylvania State University P. O. Box 218

University Park PA 16802 Yorktown Heights NY 10598-0218
fyyzhang, jzhang, anand, chliug@cse.psu.edu ffrankehg@us.ibm.com

Abstract

A range of database services are being offered on clusters
of workstations today to meet the demanding needs of ap-
plications with voluminous datasets, high computational and
I/O requirements and a large number of users. The underly-
ing database engine runs on cost-effective off-the-shelf hard-
ware and software components that may not really be tai-
lored/tuned for these applications. At the same time, many
of these databases have legacy codes that may not be easy to
modulate based on the evolving capabilities and limitations
of clusters. An indepth understanding of the interaction be-
tween these database engines and the underlying operating
system (OS) can identify a set of characteristics that would
be extremely valuable for future research on systems support
for these environments. To our knowledge, there is no prior
work that has embarked on such a characterization for a clus-
tered database server.

Using a public domain version of a commercial clustered
database server and TPC-H like1 decision support queries,
this paper studies numerous issues by evaluating perfor-
mance on an off-the-shelf Pentium/Linux cluster connected
by Myrinet. The execution profile clearly demonstrates the
dominance of the I/O subsystem in the execution, and the im-
portance of the communication subsystem for cluster scala-
bility. In addition to quantifying their importance, this paper
provides further details on how these subsystems are exer-
cised by the database engine in terms of characteristics such
as request sizes, spatial and temporal distributions. These
characteristics provide insight on the benefits of possible op-
timizations in these subsystems. This includes the potential
savings by avoiding copies across protection domains during
I/O and the potential reduction in the number of messages by
employing multicasts. Mechanisms for performing such op-
timizations are also discussed.

1These results have not been audited by the Transaction Processing Per-
formance Council and should be denoted as “TPC-H like” workload.

1 Introductions

Clusters of workstations built with commodity processing en-
gines, networks and operating systems are becoming the plat-
form of choice for numerous high performance computing en-
vironments. Commodity hardware and software components
make the price, upgradeability and accessibility of clusters
very attractive, facilitating their widespread deployment in
several application domains.

The speed at which clusters are being deployed for these
diverse and challenging environments is outpacing the rate of
progress in the systems software technologies and tools that
are crucial building blocks for the applications. Most com-
modity off-the-shelf software (including the operating sys-
tem) are not specifically tuned for cluster environments, and
it is not clear if gluing together individual operating systems,
that do not know the presence of each other, is the best ap-
proach to handle such loads. Further, off-the-shelf operating
systems are meant to be for general purpose usage, with most
of them really tuned for desktop applications or uniproces-
sor/SMP class server applications. Their suitability for clus-
ter applications is not well understood. At the same time, one
does not want to design/develop operating systems specifi-
cally for clusters, which would then go against the off-the-
shelf rationale.

Just as many of today’s operating systems (such as Linux)
are not specifically customized for these emerging (some of
these - like the database engines - are not really new, but
are clustered implementations of the original version) appli-
cations on clusters, the applications are in turn not exten-
sively tuned for these operating systems. An important rea-
son is the fact that some of these, at least the database en-
gines, have legacy codes that have evolved over several revi-
sions/optimizations over the years, and it is difficult to funda-
mentally change their design overnight in light of these new
systems (regardless of how modular they may be), which are
still evolving. There is a substantial cost that is expended in
testing/debugging to write specific software that exploits spe-
cial features of the underlying system, and it is not clear if
the ensuing rewards can offset this cost. The clustered ver-
sions of these legacy applications can be viewed more as an

exercise in porting, taking into account the new technologies
and capabilities/limitations offered by the clusters. One can-
not blame these developments since commercial vendors are
often pressurized by several factors to get a product out of the
door for a target platform as early as possible, and there is
a need to support the product on several different platforms.
Consequently, we have many legacy applications, such as the
database engines which are the focus of this paper, running on
operating systems that were not the initial targets of their im-
plementation and on clusters which were not the initial target
hardware. Over a period of time, revisions/improvements to
the products are likely to address such concerns. There is vis-
ible evidence of this in the fact that there are ongoing research
activities [3] from vendors, who already have commercial of-
ferings, exploring alternate implementation styles

It is unavoidable to encounter such situations when tech-
nologies change, and it is unclear whether the application
needs to be tailored/tuned for the underlying OS on a cluster,
or vice-versa, or if we need to do a combination of the two.
With the large code base of many of these legacy database
engines, one could hypothesize that it would be easier to fine
tune the operating system, especially with an open source OS
such as Linux. A lot of work has already gone into optimizing
the legacy applications, and the issues/optimizations may not
be very different even for these new environments/OS.

This leads us to believe that there is the possibility of
a middle ground, wherein if we know what issues are re-
ally important, then we could incorporate a few mecha-
nisms/extensions in the OS and with a few user/configuration
directives (or even slight application modifications) be able
to enjoy the benefits of better matching the application with
the underlying system. At the same time, such OS mecha-
nisms/extensions may be rewarding for other applications as
well and could very well become a feature of the OS in future
offerings. Our goal in this paper is not to develop application-
specific operating systems, nor is it to find out what OS mech-
anisms/capabilities are needed for extensibility/customization
as other researchers have done [3]. Rather, coming from the
applications viewpoint, we would like to make a list of rec-
ommendations based on the execution characteristics that can
benefit future developments. We have also taken the liberty
of suggesting possible mechanisms and their implementation
(specifically in Linux) for optimizing the execution based on
these gleaned characteristics. There are, arguably, other pos-
sible mechanisms/implementations for performing the same
optimizations (even on Linux), or one could use these charac-
teristics for customizing an extensible OS [2, 6] accordingly.
Another possibility is to provide middleware that can better
match the applications with the OS based on these character-
istics.

In summary, a detailed characterization of the execution of
applications on a cluster from the OS perspective can con-
tribute to the knowledge-base of information that can be used
for guiding future developments in systems software and ap-
plications for these environments. It would also be invaluable

for fine tuning the execution for better performance and scala-
bility, since each of these applications/environments has high
commercial impact. In this paper we focus specifically on
TPC-H queries, a decision-support database workload. This
constitutes an important workload for business enterprises,
with long running queries - ranging from a few minutes to
a few days - that can benefit from the capabilities of a cluster.

It is well understood that I/O is the biggest challenge faced
by database engines on uniprocessors/SMPs [7, 8, 9, 10] and
there is a large body of prior work proposing hardware and
software enhancements to address this problem. It is not clear
if I/O becomes any less important when we move the engine
to a cluster environment, since there is another factor to con-
sider, which is the network communication. System scala-
bility with cluster size is dependent on how parallel is the
computation division across the cluster nodes, how balanced
are the I/O activities on different nodes, and how does the
communication traffic change with data set and cluster sizes.
All this requires a careful profiling and analysis of the execu-
tion of the queries on the database engine. To our knowledge,
that there has been no prior investigation of completely char-
acterizing the execution of TPC-H on a clustered database
engine, and studying these characteristics for optimization at
the application-OS boundary.

Section 2 gives details on the experimental setup. Section 3
gives the overall system execution profile and the system scal-
ability is examined in Section 4. Based on the system profile,
the I/O and network characteristics and optimizations are dis-
cussed in sections 5, 6 and 7. Finally, Section 8 summarizes
the results and contributions of this study.

2 Experimental Setup

TPC-H contains a sequence of 22 queries (Q1 to Q22), that
are fired one after another to the database engine 2. In this
work, we consider response time for each query as main mea-
sure, i.e. the time interval between submitting the query and
getting back the results.

All the tables are horizontally partitioned across the entire
cluster using a hash-based scheme, and we have verified that
this results in a balanced distribution across nodes. There is a
client machine (not part of the cluster) that sends these queries
to a database coordinator node on the cluster, which then dis-
tributes the work and gives back the results to the client. Each
node of the cluster performs the queries on the rows resid-
ing on it and exchanges results via Myrinet if necessary. The
client is connected to the cluster using Myrinet. As was men-
tioned, we run experiments on an 8 dual node Linux/Pentium
cluster, that has 256 MB RAM and 18 GB disk on each node.
The nodes are connected by both switched Myrinet and Eth-
ernet, and we study these networks separately. We use Linux
2.4.8, which was the latest release at the time of conducting

2Q21 and Q22 take an inordinately long time and the results for these two
queries are not included.

2

the experiments. (Please note that up to version 2.4.8. stan-
dard Linux kernels do not support raw disk IO interfaces.)
This kernel has been instrumented in detail to glean differ-
ent statistics, and also modified to provide insight on the
database engine execution since we are treating it as a black
box. We have also considered the overheads of instrumenta-
tion by comparing the results with those provided by the proc
file system to ensure validity of what is presented here.Unless
otherwise stated, the experiments use kernel level TCP over
Myrinet for communication, and the dataset is 30 GB in size.

3 Operating System Profile

We first present a set of results that depict the overall system
behavior at a glance. The following results have been ob-
tained by both sampling the statistics exposed by the Linux
proc file system (stat, net/dev, process/stat) as
well as by instrumenting the kernel. The kernel instrumenta-
tion was done by inserting code in the Linux system call jump
mechanism, as well as in the scheduler and points where there
is pre-emption (such as blocking) or resumption. The proc file
system information is used to present the percentage utiliza-
tion of the system in different modes, the rates/frequency of
I/O, page fault and network activities. The profile of different
system calls is presented from the kernel instrumentation.

The results are shown in Table 1, which gives system statis-
tics for each query in terms of: the percentage of time that
the query spent executing on the CPUs in user mode (rela-
tive to its overall execution time), the percentage of time that
the query spent executing on the CPUs in system mode (rela-
tive to its overall execution time), the average number of page
faults incurred in its execution per jiffy (10 milliseconds in
Linux), average number of file blocks read per jiffy, aver-
age number of file blocks written per jiffy, average number
of packets sent over the network per jiffy, the average num-
ber of packets received from the network per jiffy, and the
percentage utilization of the CPU(s) by the database engine
during I/O operations (captures the overlap of work with I/O
operations). The file block size is 4096 bytes, and the Maxi-
mum Transfer Unit (MTU) for network packets is 3752 bytes.
In addition to these, the table also shows the top four system
calls (in terms of time) exercised by each query during its exe-
cution, and the percentage of system time that is spent in each
of these calls. These statistics help us understand what com-
ponents of the OS are really being exercised, and the relative
importance of these components.

From these results, we make the following observations:

� As is to be expected with database applications, the bulk
of the execution time in the system mode is taken up
by file system operations (pread/pwrite). These calls are
employed to read and write the queried relational tables,
as well as for any temporary tables that are needed along
the way. Our examination of the execution leads us to
believe that the considered database server goes via the

file system for I/O accesses, and does not directly use
raw disks or mmap operations.

Disk operations are so dominating in some queries (Q1,
Q8, Q12, Q17) that the CPU utilization does not cross
50% in these queries. I/O costs not only result in poor
CPU utilization overall (because of waiting for disk op-
erations to complete), but also in significantly increas-
ing the system call overhead itself. Note that this system
call overhead (system CPU time) does not include the
disk latencies. Rather, this high overhead is due to mem-
ory copying, buffer space management and other book-
keeping activities. In some cases (such as Q12), the sys-
tem CPU time (overheads) even exceeds the amount of
time spent executing the useful work in the query at the
user-level.

� Most of the I/O that is incurred is more due to reads
than write operations. This is particularly characteris-
tic of TPC-H queries, because most operations are for
decision-support (requiring only reads).

� Though the numbers are not explicitly given here, we
would like to point out that the high read overheads are
not only because of the higher number of file system read
calls, but are also due to the higher cost per invocation of
this call. We noticed that a pread call can run to nearly a
millisecond in some queries.Of all the system calls con-
sidered, we found the per pread invocation taking the
maximum amount of time.

� When we examine the CPU utilization during I/O (last
column of Table 1), we find that there is good overlap
of work with disk activity in some queries. As we will
point out later on in this paper, the bulk of I/O is ini-
tiated by the database prefetcher, which does not nec-
essarily come into the critical path of the execution in
many queries. However, queries such as Q12, encounter
significant blocking.

� After the file system calls, we found socket calls (select,
socketcall) to be the next dominant system overhead.

� Interprocess communication (IPC), though not as domi-
nant as the other two OS components, does come in third
in the overall system overheads.

� Despite the dominance of I/O in many queries, queries
like Q11 have a high CPU fraction (particularly in the
user mode). Even though there are I/O operations in
these queries, their costs are overshadowed by useful
work (CPU utilization is around 66% even during pe-
riods of disk activity, and the bulk of it is in the user
mode). Another point to note from this observation, and
in the fact that there is little variation in these results
from node to node, is the hypothesis that such queries
are likely to scale very well as we move to larger clus-
ters since they can benefit from higher degrees of paral-
lelism.

3

user system page blocks blocks packets packets CPU utilization
query CPU CPU system CPU breakup (%) faults per read per written per sent per received per during IO

(%) (%) jiffy jiffy jiffy jiffy jiffy (%)

pread pwrite select ipcQ1 27.58 21.44
46.7 46.7 3.3 2.9

1.50 51.01 23.1151 0.0012 0.0015 26.87

socketcall pread select pwriteQ2 56.22 15.67
35.4 32.9 20.1 7.3

0.39 21.97 1.7718 1.9077 1.9248 53.73

pread socketcall select pwriteQ3 40.76 17.76
54.1 15.1 13.1 12.8

0.99 55.47 4.9591 0.9778 0.9938 55.40

pread select socketcall pwriteQ4 51.48 15.19
60.0 17.6 11.2 6.9

0.00 22.97 1.0478 0.3517 0.3652 68.41

socketcall pread select pwriteQ5 58.96 15.68
43.3 29.2 21.7 3.7

0.05 16.73 1.1369 2.0779 2.0849 42.81

pread ipc socketcallQ6 40.65 22.20
90.1 4.9 4.3

1.73 90.72 0.0020 0.0012 0.0012 33.49

pread pwrite ipc selectQ7 52.44 16.82
72.1 14.8 6.1 6.0

0.00 16.89 1.9467 2.3880 2.3521 31.04

pread pwrite select ipcQ8 20.65 17.71
59.5 23.7 9.4 5.8

0.01 27.63 4.8078 0.0261 0.0228 12.91

pwrite pread select ipcQ9 51.41 13.52
40.8 38.7 13.9 2.5

0.00 6.69 1.9276 0.0133 0.0136 23.21

pread socketcall select pwriteQ10 41.79 17.87
57.7 17.9 13.4 7.0

0.17 41.99 1.8880 0.8774 0.8859 18.71

socketcall pread select ipcQ11 81.00 13.28
43.6 27.0 24.8 3.9

0.49 18.87 0.0020 2.3794 2.4011 66.46

pread selet ipcQ12 14.91 19.73
78.3 15.2 5.2

0.25 40.79 0.0197 0.0102 0.0101 4.8

pread socketcall select ipcQ13 53.23 21.86
45.7 30.3 18.8 4.6

1.62 45.86 0.0034 2.0966 2.0935 32.71

pread select ipcQ14 33.57 22.19
85.6 8.3 5.1

1.01 84.78 0.0025 0.1156 0.1175 29.75

pread select ipc nanosleepQ15 55.37 18.69
71.7 14.0 10.9 1.9

0.60 75.26 0.0033 0.6260 0.7703 51.68

socketcall pread select ipcQ16 51.84 15.30
43.5 27.0 22.2 5.7

2.32 15.36 0.8454 2.4836 2.4993 46.24

pread pwrite select ipcQ17 23.71 18.26
59.4 26.1 8.7 4.9

0.00 32.76 5.2532 0.0036 0.0037 13.94

pread socketcall select pwriteQ18 52.64 14.77
61.1 17.3 13.3 5.2

0.04 17.16 0.6261 0.3890 0.3803 35.11

pread select ipc socketcallQ19 35.48 21.16
80.1 7.3 5.9 5.9

0.29 78.76 0.0032 0.3343 0.3329 23.38

pread select socketcall ipcQ20 56.98 14.72
53.4 25.6 15.3 3.6

0.00 15.74 0.1601 0.3456 0.2973 47.36

Table 1: System Profile (statistics are collected from node 1)

4 System and Workload Scalability

The previous experiments used the 8-node dual configuration
on a 30 GB dataset, with Myrinet as the interconnect. We
briefly present results to discuss the scalability of the execu-
tion as a function of number of nodes, the network (switched
1.26 Gbps Myrinet vs 100 Mbps Ethernet), and to study the
trade-offs between a larger cluster vs a smaller one with more
processors at each node (compare 4 node duals with 8 node
uniprocessors), in Figure 1 for a 1 GB dataset. Results are
normalized with respect to the 8 node dual configuration. It
should be noted that a complete scalability study across the
spectrum of parameters is well beyond the scope of this pa-
per. Rather we are only trying to point out the relative perfor-
mance and issues to understand the implications of some of
these parameters.

We observe that increasing the number of nodes has sev-
eral advantages. First, you get higher parallelism in compu-
tation and in I/O. The other significant benefit is in the ability
to harness more physical memory (buffer space) across the
nodes for the same dataset [16], which can reduce I/O fur-
ther. The downside is the additional communication that may
be incurred. We find that the benefits outweigh the draw-

backs for nearly all queries except Q2 and Q17, even when
we move from 1 to 2 nodes. This can be explained by the fact
that Q2 has higher communication and Q17 has much lower
CPU utilization that can benefit from parallelism (see Table
1). Moving on to 4 or 8 nodes, we find that in Q9, Q10, Q11,
and Q20, overheads from parallelism hurt their performance
as well. In nearly all other queries, we find significant savings
(particularly at the smaller cluster sizes) from parallelism. A
large portion of this savings is due to the higher buffer avail-
ability (reducing the total I/O, and not just providing parallel
accesses to disks), that results in a superlinear performance
improvement for queries such as Q9, Q11, Q12, Q15, and
Q20. In general, we observe that 4 and 8 dual node configu-
rations are good operating points for this dataset size of those
considered. After a certain size, the savings from larger mem-
ory drop a little, with the overheads also offsetting a large
portion of these savings and the gain in parallelism.

Next, when we compare the 4 node dual with the 8 unipro-
cessor nodes, we find that there is no clear winner. In Q1, Q3,
Q4, Q5, Q6, Q8, Q12, Q14, Q17, Q18, and Q19, the unipro-
cessor node configuration is better, and the 4 node dual is bet-
ter for the others. If you look at these queries in Table 1, these

4

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10
0

2

4

6

8

10

Query
N

o
rm

al
iz

ed
 R

es
p

o
n

se
 T

im
e

Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20
0

2

4

6

8

10

N
o

rm
al

iz
ed

 R
es

p
o

n
se

 T
im

e

Query

Figure 1: For each query, there are six bars (from left to right) showing the query response (execution) time under the
following six configurations respectively: (i) one 2-way SMP node; (ii) two 2-way SMP nodes, myrinet; (iii) four 2-way SMP
nodes, myrinet; (iv) eight 2-way SMP nodes, myrinet; (v) eight uniprocessor nodes, myrinet; and (vi) eight 2-way SMP node,
100Mbps Ethernet. We normalize the execution times under each configuration with respect to the time under configuration
(iv). The dataset under examination is 1G. Note that the bars which reach the top of the graph actually exceed 10, and they
are chopped in order to better show the differences between others.

have much lower CPU utilization, suggesting that disk activ-
ity is the bottleneck here. Even though both configurations
provide the same number of CPUs, the 8 node configuration
provides higher disk parallelism that benefits these queries.
In the others, the communication is higher, and that becomes
much more of a problem with a small 1 GB database consid-
ered in these experiments than the I/O parallelism.

It should be noted that in all these experiments we have
used constant problem size scaling [4], with the physical
memory increasing as we increase the cluster size. It would
also be interesting to explore memory constrained scaling,
or to consider a smaller cluster with more memory per node
compared to a larger cluster with less memory per node (say
keeping the overall cluster cost in dollars the same). Such
issues are beyond the scope of this paper and we intend to
explore these in the future.

When we move from a slow network (Ethernet) to a fast
switched Myrinet platform, on the average query execution
gets speeded up by 25%. We are not explicitly presenting
results varying different dataset sizes, though we have con-
ducted those experiments. In general, a larger dataset scales
better as a function of the cluster size.

Before concluding this section, we would like to reiterate
the importance of I/O and communication as we move to the
future. Definitely, communication becomes important with
larger clusters. At the same time, I/O can benefit signifi-
cantly from such clusters not only because of the parallelism

to disks, but also because of the higher memory capacities.
Still, the I/O bottleneck would continue to pose challenges for
clustered database services as dataset sizes increase. Further,
I/O and communication become all that much more promi-
nent with faster CPUs, and these are the focus of our attention
in the rest of this paper.

5 I/O Subsystem: Characterization
and Possible Optimizations

The results from the system profile clearly illustrate the im-
portance of I/O for database servers. We now set out to look
at the I/O subsystem more closely, trying to characterize its
execution and look for possible optimizations.

5.1 Characteristics

Table 2 sorts the queries in decreasing order based on the frac-
tion of total query execution time spent in the pread system
call obtained from earlier profile results. We can see that
pread is a significant portion of the execution time in many
queries. It takes over 10% of the execution time in 11 of the
queries. It should be noted that this is the time spent in the
system call (i.e. in buffer management, book-keeping, copy-
ing across protections domains, etc.), and does not include
the disk costs itself. This implies that it is not only important

5

Query Q6 Q14 Q19 Q12 Q15 Q7 Q17 Q8 Q10 Q1
% of exec. time 20.0 19.0 16.9 15.4 13.4 12.1 10.8 10.5 10.3 10.0

Query Q13 Q3 Q4 Q18 Q20 Q2 Q9 Q5 Q16 Q11
% of exec. time 10.0 9.6 9.1 9.0 7.9 5.2 5.2 4.6 4.1 3.5

Table 2: pread as a percentage of total execution time

to lower or hide disk access costs, but to optimize the pread
system call itself. In the interest of space, We focus on query
Q6 which incurs the maximum pread overhead in the rest of
this section. (the trends/arguments are similar for the others).
Further, as with the profile results, we did not observe much
variation across the nodes, and consequently examine the ex-
ecutions from the viewpoint of each node.

0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

IO Request Size (X 4096 bytes)

C
D

F

agent reads
prefetch reads

(a) CDF of read request size (Q6)

10
−4

10
−3

10
−2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

read inter−arrival time (second)

C
D

F

agent reads
prefetch reads

(b) CDF of inter-read time (Q6)

Figure 2: IO characterization results in terms of read request
size and time between successive reads.

First, we would like to briefly explain how we believe the
reads are invoked in the query execution. DB2 has several
agent processes that actually perform the work in the queries,
and prefetcher processes that make pread calls to bring in data
from disk ahead of when the agent may need it. Figure 2
shows that the agent reads are more bursty, coming in closer
proximity, than the reads issued by the prefetcher.

We found that the preads issued by the agent are usually
for a block that has been recently read by the prefetcher just
before that invocation. It may come as a surprise as to why
this block could not have been serviced by the prefetcher di-
rectly (if it was only recently read), instead of going to the
kernel. One possible explanation is that the agent is doing a
write on this block, and it may not want to write into a page
that is residing in the prefetcher. Instead of making instead

of making ipc calls to remove the page from the prefetcher, it
would be better to create a copy within the agent by using a
pread call directly.

For further credibility on this hypothesis, before returning
from pread calls, we modified the kernel to set the corre-
sponding data pages to be read-only mode, and we found the
agent to incur (write) segmentation faults (indicated as copy-
on-write in Table 4) on nearly all those pages (compare the
copy-to-user and copy-on-write columns for the agent in Ta-
ble 4). Finally, it should be noted that the agent pread calls are
much lower (both in terms of the number of calls and in terms
of the number of blocks read) than those for the prefetcher.

We also include in Table 3 the fraction of pread block re-
quests that hit in the Linux file cache for the prefetcher and
the agents. As was pointed out, the agent requests come very
soon after the prefetcher request for the same block, and thus
nearly always hit in the Linux file cache. With the prefetcher
requests on the other hand, we find the file cache hits range
between 40-60%. We mentioned earlier that the prefetcher
requests are usually for 32 blocks at a time. The Linux
file cache manager itself does some read ahead optimizations
based on application behavior and brings in 64 blocks (twice
this size). With a lot of regularity (sequentiality) in I/O re-
quest behavior for this workload, this read ahead tends to cut
down the number of disk accesses by around 50%.

One can observe this regularity or patterns in the I/O re-
quest blocks by looking at Figure 3 (a) which shows the block
number (expressed as a combination of inode + block number
within file) requests that are issued to system. Further, Figure
3 (b) gives the same information for those requests that miss
in the Linux file cache (on the average, every alternate request
from (a) would miss here). One can visually observe regular-
ity/sequentiality in both the requests that are generated and
in the addresses that miss in the file cache. Prefetching and
read-ahead are thus extremely useful for these executions.

5.2 Recommendations and Possible Optimiza-
tions

The previous subsection showed that system overheads in
preads (not in the actual disk I/O) are a significant portion
of the execution time. These read calls are usually for several
blocks (32) by the prefetcher (that dominate the occasional
single block reads by agent), and these blocks are hardly mod-
ified (TPC-H being a decision support workload, this obser-
vation is not very surprising). Further, many of these blocks
are actually present already in the Linux file cache. We next
explore how we can optimize the pread calls based on this

6

Query prefetcher hit ratio agent hit ratio Query prefetcher hit ratio agent hit ratio
Q1 0.5711 1.0000 Q11 0.2788 1.0000
Q2 0.5321 1.0000 Q12 0.4735 1.0000
Q3 0.5164 1.0000 Q13 0.5261 1.0000
Q4 0.4873 1.0000 Q14 0.5344 1.0000
Q5 0.5991 1.0000 Q15 0.4227 1.0000
Q6 0.4729 1.0000 Q16 0.4409 1.0000
Q7 0.5182 1.0000 Q17 0.7365 1.0000
Q8 0.5300 1.0000 Q18 0.4226 1.0000
Q9 0.4683 1.0000 Q19 0.5625 1.0000

Q10 0.5082 1.0000 Q20 0.5453 1.0000

Table 3: Fraction of block requests that hit in Linux file cache for prefetcher and agent requests

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

5

6

7

8

9

10

11

12
x 10

10

Read Request

F
ile

 In
od

e
+

 O
ffs

et

(a) Request address (Q6)

0 0.5 1 1.5 2

x 10
4

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12
x 10

11

Read Request

F
ile

 In
od

e
+

 O
ffs

et

(b) Page cache miss address (Q6)

Figure 3: pread request addresses and the corresponding ad-
dresses that miss in the Linux page cache (that are sent to
disk)

information.

A significant portion of pread cost is expended in copy-
ing data (that is in a block in the file cache, either already
or brought in upon disk I/O completion), from the kernel
file cache to a user page, which needs to cross a protection-
domain boundary (using the copy-to-user() mechanism). In
the current 2.4.8 Linux implementation, a copy is actually
made at this time.

This problem of reducing copying overheads for I/O has
been looked at by several previous studies [14, 5, 12]. There
are different techniques one could use, and a common one is
to simply set the user page table pointer to the buffer in the
file cache. This could affect the semantics of the pread op-

eration in some cases, particularly when more than one user
process reads the same block. In the normal semantic, once
the copy is done, a process can make updates to it without
another seeing it, while the updates would be visible with-
out copies. This is usually addressed (as is by Linux in sev-
eral other situations) by the copy-on-write mechanism, Some
studies [5, 14, 12] suggest that even this may not be very ef-
ficient since updating virtual address mappings can become
as expensive as copying. Instead, sharing of buffers between
user and kernel domains is advocated. In this paper, we are
not trying to advocate any particular technique for reducing
these copies. Rather, we would like to find out what would be
the benefit of reducing copy costs.

Remember, that a copy-to-user is actually needed when the
pread is not page aligned and/or is interested in only part of
the page. However, from our characterization results we find
that most requests are page aligned and are in fact for an inte-
gral (32) number of papers. As a result, one could use the vir-
tual remapping approach to implement the reduction of copies
in these queries.

To examine the potential benefits of such an implementa-
tion, we track the total number of copy-to-user() calls that are
made (actually one for each page) and the number of these
calls that cannot be avoided (you cannot avoid it when there is
a write segment violation and we need to do a copy-to-user at
that time), during the execution of these queries after setting
these pages to read-only mode. These numbers are shown in
Table 4. As we can observe, the number of copy-on-writes
that are actually needed is much lower than the number of
copy-to-user invocations, as was suspected initially. In gen-
eral, we get no less than 65% savings in the number of copies,
with actual savings greater than 80% for most queries (see the
last column of this table). Most of these savings are due to the
prefetcher reads. Our measurements of copy-to-user routine
for a single block using the high resolution timer takes around
30 microseconds for one page. For 32 block reads that the
prefetcher issues, avoiding this cost can be a significant sav-
ings. This is particularly true when the blocks hit in the file
cache (and there is no disk I/O) since this cost is a significant
portion of the overall time required to return back to the ap-
plication. Table 3 shows that this happens nearly 50% of the
time. Even with disk activity, Table 1 shows CPU utilization

7

prefetcher agent totalQuery
copy-on-write copy-to-user % Reduction of copies copy-on-write copy-to-user % Reduction of copies % Reduction of copies

Q1 0 1040228 100 11551 11565 1.2 98.9
Q2 0 383334 100 63145 63145 0 85.7
Q3 0 1253107 100 52155 52157 0.003 96.0
Q4 0 997507 100 235758 235759 0.0004 80.9
Q5 0 1007919 100 307689 307689 0 100.0
Q6 0 914482 100 47 47 0 100.0
Q7 0 1084454 100 276790 276791 0.0003 79.7
Q8 0 978134 100 255057 255060 0.001 79.3
Q9 0 2478154 100 316500 316502 0.0006 88.7
Q10 0 974062 100 278213 278215 0.0007 77.8
Q11 0 170643 100 6833 6834 0.01 96.1
Q12 0 911544 100 134933 134933 0 87.1
Q13 0 184491 100 42 43 2.3 100.0
Q14 0 945619 100 38429 38430 0.003 96.1
Q15 0 1175166 100 38394 38395 0.003 96.8
Q16 0 36137 100 15001 15003 0.01 70.7
Q17 0 1968122 100 113962 113963 0.0008 94.5
Q18 0 1945777 100 502 503 0.19 100.0
Q19 0 865529 100 38429 38429 0 95.7
Q20 0 847755 100 50442 50444 0.003 94.4

Table 4: % of copy-to-user calls that can be avoided. Of the given copy-to-user calls, only the number shown under the
copy-on-write are actually needed. The statistics are given for the prefetcher and agents separately, as well as the overall
savings.

higher than 50% in most queries, suggesting that removing
this burden of copying by the CPU would help query execu-
tion.

There is a caveat that we would like to point out with
respect to the page remapping solution for reducing copy-
ing costs particularly with this database workload. With the
prefetcher being quite active, and getting pages that are very
often found in the Linux file cache, there is the possibility of
very soon having a number of virtual address mappings to the
file cache buffers (rather than to the buffers in the prefetcher
itself). The file cache would then have to be made much
larger (the buffer manager in the database engine uses several
hundred megabytes of memory while the file cache is much
smaller), or we will keep replacing entries in the file cache.
File cache replacements may also need to be handled as copy-
on-replacements, which can become a concern. These issues
lead us to believe that a closer examination of the subtle in-
teractions between the prefetching engine (that runs at user
level) and the Linux file cache is needed, so that we under-
stand the full ramifications of the pros and cons of these is-
sues. Such a detailed exploration is well beyond the scope of
this paper.

6 Network Subsystem: Characteriza-
tion and Possible Optimizations

6.1 Characteristics

We next move on to the other exercised system service,
namely TCP socket communication. As in the earlier section,
we first attempt to characterize this service based on certain
metrics that we feel are important for optimization. We ex-
amine the message exchanges based on the following charac-
teristics: the message sizes, the inter-injection time (between

successive messages by an application), and the destination
for a message. We present these characteristics using den-
sity functions. The inter-injection time (or injection rate) and
message size properties are captured by drawing their corre-
sponding Cumulative Density Functions (CDF). The destina-
tion for a message is captured by a Probability Density Func-
tion (PDF) showing the probability of a message from a node
heading to a specific node (7 possibilities on a 8 node cluster).

In the interest of space, We show the network subsystem
characteristics pictorially in Figure 4 for query Q16, which
has the highest message injection rates shown in Table 1.
Many of the results are similar across queries, and we ex-
plicitly mention the differences in the text if there are any.
These results have been obtained by instrumenting the kernel
and logging all the socket events, their timestamps and argu-
ments at the system call interface. As will be pointed out later
on, for some characteristics we also needed to log messages
themselves or at least their checksums.

From the density function graphs, we observe the follow-
ing:

� The message length CDF graph shows that just a hand-
ful of message sizes are used by the database engine. In
fact, we observed messages were usually either 56 bytes
or 4000 bytes. We hypothesize that the shorter size (56
bytes) is used for control messages, and the larger size
(4000 bytes) is used for actual data packets. Other mes-
sage sizes were not very common. We found that Q1, Q6
and Q7 only send short messages, and short messages
are the dominant part of Q15 communication (though
there are a few long messages here as well). In the rest
of the queries, we observed that there were around 40%
short messages on the average.

� There are many messages that are sent out in close prox-
imity (temporally). In fact, Figure 4 (b) shows that

8

0 2000 4000 6000 8000 10000 12000 14000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Message Size (bytes)

C
D

F

10
−1

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Message send inter−arrival time (millisecond)

C
D

F

1 2 3 4 5 6 7
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Message Destination

P
D

F

(a)CDF of message size (Q16) (b) CDF of inter-arrival time (Q16) (c) PDF of message destination (Q16)

Figure 4: Characterizing Message Sends

nearly 60% of the messages are separated by less than
1 millisecond from each other temporally. In fact, the
temporal separations are much lower for queries Q2, Q7,
Q10, Q13, Q14, Q15, Q16, Q18 and Q19. We found
similar observations for most of the other queries as well.

� The destination PDF graph is considerably influenced
by the nature of database operations. In this engine,
joins usually involve all-to-all communication of their
corresponding portions of the table, and thus queries that
are join intensive (such as Q11 and Q16 that are shown
here) have the PDF evenly distributed across the nodes.
There are a few queries, such as Q7, that are not really
join intensive, but perform more specific operations that
are based on values of certain primary keys. With such
executions, there is a slight bias in communication to-
wards nodes that have those values. Further, the engine
uses a coordinator node that manages the query execu-
tion across the cluster, and this node performs a little
different (we mentioned earlier that communication pat-
tern was one issue that was different across nodes) than
the others. In the other nodes, joins dominate most of the
queries in general, and the communication load is more
or less balanced.

6.2 Recommendations and Possible Optimiza-
tions

The above message characteristics say that messages are clus-
tered together, often coming in close temporal proximity. Fur-
ther, database operations such as joins use all-to-all commu-
nication of messages which have a high probability of being
the same size. These observations suggest an hypothesis that
many of these messages may actually be point-to-point imple-
mentations of a multicast/broadcast that the database engine
would like to perform. It should be noted that a multicast can
send the same information to several nodes at a much lower
cost than sending individual point-to-point messages. This
saves several overheads at a node (copies, packetization, pro-
tocol header compositions, buffer management, etc.) and can
also reduce network traffic/congestion if the hardware sup-
ported it. Possible implementations of multicast are discussed
later in this discussion.

To find out how many of the message exchanges can be
modeled as multicasts, we investigated several approaches.
During the execution, in addition to the above events, we
also logged the messages themselves. These logs were then
subsequently processed to compare whether successive mes-
sages were identical and addressed to different destinations.
Another approach that we tried (which is actually a possible
one to use within the OS during the course of execution itself
to detect multicasts) is to compare checksums of successive
messages. We would like to point out that we found that mes-
sages do indeed differ in the first 56 bytes, and that too in
only 3 of these 56 bytes in most cases. After numerous exper-
iments, we feel that the first 56 bytes are the header/control
information, and the 3 bytes that really vary include the desti-
nation id and a possible sequence number. In our analysis of
tracking the number of multicast possibilities, we ignore these
three bytes, and check the differences for the rest to verify
whether they contain the same information. If they do, then
we identify that message as a multicast possibility (and the
number of messages that would be incurred in a system that
supports multicast would go down in this case). We found
that both the approaches - actually comparing the messages
or comparing the checksums - gave us similar results, and
Table 5 gives the percentage of reduction in the number of
messages that would be sent if the underlying infrastructure
supported multicasts. This information is given for both the
short and long messages to verify if multicasts are beneficial
to any one class of messages or for both.

We find that there is a substantial multicast potential in
these queries. There is a reduction in the total number of mes-
sages ranging from 8% to as high as 76%. In general, we find
that the multicast potential is greater for the smaller (possibly
control) messages than the longer (possibly data) messages.
As was pointed out in the earlier results, both short and long
messages are equally common in many queries, and we need
to optimize both these classes.

This potential can be realized only if the underlying net-
work supports multicasts (incidentally, we found a large num-
ber of these multicasts are in fact broadcasts, which Ethernet
can support). Even assuming that the underlying infrastruc-
ture (either at the network interface level, or in the physical
network implementation) supports multicast, the message ex-

9

% reduction of % reduction of % reduction of % reduction of % reduction of % reduction ofquery
total messages small messages large messages

query
total messages small messages large messages

Q1 44.7 71.4 38.7 Q11 9.6 28.6 0.1
Q2 20.4 58.7 0.2 Q12 8.3 7.8 2.9
Q3 48.2 64.3 38.0 Q13 24.5 75.2 0.1
Q4 22.6 58.6 0.1 Q14 27.9 80.4 0.7
Q5 8.0 7.1 8.4 Q15 46.6 56.5 0.7
Q6 76.4 78.6 45.5 Q16 59.1 63.0 56.9
Q7 57.5 71.4 56.2 Q17 41.5 66.7 27.3
Q8 29.1 75.5 4.8 Q18 11.4 32.3 0.00
Q9 66.8 78.5 61.1 Q19 26.7 79.4 0.2

Q10 25.0 73.6 0.1 Q20 21.1 62.8 0.1

Table 5: The potential impact of multicast on queries

changes should be injected into this infrastructure as multi-
cast messages. This can be done at two levels. First, the
application (i.e. the database engine) can itself inject multi-
cast messages into the system. Our conversations with DB2
developers indicate that multicast is used by this database en-
gine for purposes like replication, fault recovery etc., but not
extensively for data exchanges when processing a query. Fur-
ther, to work across numerous different platforms, sometimes
it may be easier from the programming viewpoint for these
applications to simply treat multicasts as point-to-point mes-
sages. The other approach, which we investigate, is to auto-
matically detect multicast messages within the operating sys-
tem (or middleware before going to sockets) and perform the
optimizations accordingly. We next describe an online mech-
anism for such automatic detection. It should be noted that
Table 5 gives an upper bound on message reductions by an
offline analysis of the message traces, and the online version
has only limited window of events to examine for detecting
multicasts.

The online algorithm in the OS or middleware can make the
system wait for a certain time window while collecting mes-
sages detected as multicasts, without actually sending these
out. At the end of this window, we send a single multicast
message for all the corresponding destinations of the saved
messages. The advantage with this approach is that we do
not send a message to a destination that the application does
not send to. The drawback is that the time between succes-
sive messages and time window may be too long a wait that
it may be better off just sending them as point-to-point mes-
sages. Further, if the window is not long enough, we may
not detect some multicasts, and end up sending point-to-point
messages.

Consequently, it is important to understand the impact of
window size on multicast potential with this online algorithm.
If we use such an algorithm within the OS/middleware, then
the percentage reduction in the number of messages that need
to be sent out with this approach is given in Figure 5 as a
function of the time window that it waits for Q7, Q11, and
Q16. As is to be expected, expanding the window captures a
large fraction of multicasts until the benefits taper off. How-
ever, one cannot keep expanding a window arbitrarily since
this can slow down the application’s forward progress in case
this message is needed immediately at the destination. We
noticed that the TCP socket implementation on the underly-

ing platform had one-way end-to-end latencies of around 100
microseconds. So it is not unreasonable to wait for compa-
rable time windows since the message would anyway take a
large fraction of that time to leave that node. If we consider,
window wait times of say 500 microseconds, then we can see
reduction of around 40% and 25% of the messages for Q7 and
Q16 respectively. On the other hand, Q11 does not benefit
much from such an online algorithm (nor from the offline al-
gorithm). We found that queries Q6, Q7, Q9, Q15, Q16, Q17
(the graphs are not explicitly given here) had at least 15%
message reduction with a wait time of 500 microseconds. It
is, however, important to understand the ramifications of this
wait time on query execution for eventual savings. Another
point to note is that, if the send on one node and correspond-
ing receive on another are not closely tied to each other (i.e.
there is some temporal slackness), then one can increase the
time window more aggressively. The underlying protocol can
perhaps be extended to carry this slackness information back
and forth to enable such decisions.

The observation about online monitoring of slackness, sug-
gests that a more realistic implementation of this algorithm
should make adaptive changes to the time window during
the course of execution. As it finds that despite waiting, it
is not able to combine messages as multicasts, it can adap-
tively decrease the window so that query execution does not
get slowed down (in fact, it can do this even when it finds
all the possible multicasts within a shorter time). Similarly,
when the underlying protocol detects more slackness (this can
be done at the receiver by examining the time difference be-
tween when the message gets in and when it is actually used),
the algorithm can adaptively increase the window. The win-
dow may also need to be tuned based on the message size.

7 Optimizing I/O and Communication
Simultaneously

One other issue that we considered for optimizing I/O and
communication at the same time was the reduction of copies
when there is the possibility of reading from disk and sim-
ply sending the data out to another cluster node. A system
with a storage area network or a network attached storage
disk (NASD) would facilitate direct access of remote data by
a node, but the environment that we are conducting the eval-

10

10
−2

10
−1

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

Time to wait (millisecond)

P
er

ce
nt

ag
e

re
du

ct
io

n
of

 to
ta

l m
es

sa
ge

s

10
−2

10
−1

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

Time to wait (millisecond)

P
er

ce
nt

ag
e

re
du

ct
io

n
of

 to
ta

l m
es

sa
ge

s

10
−2

10
−1

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

Time to wait (millisecond)

P
er

ce
nt

ag
e

re
du

ct
io

n
of

 to
ta

l m
es

sa
ge

s

(a) Q7 (b) Q11 (c) Q16

Figure 5: The impact of wait time on multicast message detection

uations on do not provide such capabilities. A node has to
necessarily involve the remote CPU (specifically its counter-
part database process) to retrieve data from its disk. Similarly
the CPU has to be involved in the write to remote disk as well.
Some of the optimizations that an OS could do, when there is
no direct remote access hardware support, is to optimize the
overheads that are involved when moving data from one I/O
channel (say the disk) to another, is to manage buffers effec-
tively by reducing copying costs [12, 5].

To evaluate the possibilities with this approach, we instru-
mented all the socket and I/O calls, and compared all the
data that is read/written from disks and the socket messages.
However, we did not find very close similarity in the con-
tent across these channels to suggest significant benefits from
this approach. This can be attributed to the fact that several
queries require a node to send out specific columns of a ta-
ble after reading from disk. This usually requires retrieving
all the columns of a row from the disk since it is stored in
row-major order on disk, and then selecting the columns to
send out. Sometimes, only select rows need to be sent based
on some predicate. Such filtering/selection operations cannot
be offloaded to Linux (to ask it to read from disk and per-
form these operations and then send the result out on sockets,
thus reducing crossing protection boundaries and copying).
Hence, we do not see too much scope for optimizing these
mechanism unless the OS can allow extensibility/modularity
to perform such operations. Earlier studies examining cross-
channel buffer management [12] showed benefits for web
servers, where the data is not really processed/filtered as is
the case for these database engines. Further, in a cluster with
hardware capabilities like a storage area network or NASD, it
would be useful to incorporate intelligence at the disk so that
these operations can be carried out to reduce transfer traffic
as pointed out by others [11, 13, 15].

8 Summary of Results and Conclud-
ing Remarks

This is the first study to embark on a detailed characteriza-
tion and to present a range of performance statistics for the

execution of TPC-H queries on a medium sized Linux clus-
ter of SMP nodes (a popular configuration in today’s com-
mercial market) connected by Myrinet and Ethernet. This
has required distributing the tables of this workload across
the disks of the cluster, implementing the queries, detailed
kernel instrumentation to log events, and kernel modifica-
tions/extensions to better understand the interaction of the
database server with the OS. A brief summary of the issues
that are observed from the evaluation follows.

Moving from a uniprocessor/SMP to a cluster does not
make I/O any less important for a database engine. We find
that disk activity can push CPU utilization as low as 30% in
some queries. The overhead of I/O is not just because of the
disk latencies, and a significant portion is in the pread system
call itself (copying costs mainly). Further, most of the I/O ac-
tivity is because of the database prefetcher, that brings in large
chunks of data (32 blocks at a time), ahead of use, and this is
able to do a fairly good job because of reasonably good reg-
ularity/sequentiality in the queries. The read ahead feature of
the Linux file cache, further helps in reducing the overheads
providing hit rates of around 50%. While prefetching mech-
anisms, whether in the database engine or in the Linux file
cache, can be tailored (it probably already is) for such sequen-
tiality, the only consideration is the buffer space availability
which in turn depends on physical memory availability. On
the other hand, we find that it is extremely important to opti-
mize the pread system call itself, by reducing the amount of
copying. In this decision support workload that is read dom-
inated, reducing copies can significantly reduce read over-
heads without sacrificing much on sharing costs. One could
afford to pay higher penalties at writes if needed, if that can
cut down read costs significantly. There are several known
techniques for reducing copying costs , and in this study we
examined the virtual address remapping scheme to show how
many copies can actually be avoided. This scheme helps us
achieve the objective without requiring any modifications to
the legacy database code, but a more detailed investigation of
the cost of address remappings is warranted since this can be-
come expensive as pointed out earlier . It is our belief that
asynchronous I/O provisioning in Linux [1] would also help,
though this would again require application modifications.

11

The other system service that is also exercised is the
socket communication to exchange control and data messages
amongst the nodes. While this may not be as dominant as
I/O, we find 5-10% of the execution time is spent in socket
calls even for a 8-node cluster, and this issue will become
more important for larger clusters. We find that many of
these messages are identical, suggesting potential for mul-
ticasts/broadcasts, which the database engine implements as
point-to-point messages.

It should be noted that our goal in this paper is not to rec-
ommend specific implementations or designs for improving
performance. Rather, we are trying to identify characteristics
of application-OS interactions and to suggest issues that can
help improve performance for this workload.

Our ongoing work is examining how best to provide the
support that the database engine requires, and how to manage
the resources effectively in the presence of multiple users. In
addition, we are investigating other TPC workloads, as well
as other cluster applications such as web and multimedia ser-
vices for similar studies.

References
[1] POSIX Asynchronous I/O.

http://oss.sgi.com/projects/kaio.

[2] B. Bershad, S. Savage, P. Pardyak, E. Sirer, M. Fiuczynski,
D. Becker, C. Chambers, and S. Eggers. Extensibility, Safety
and Performance in the SPIN Operating System. In Proc. of the
15th ACM. Symp. on Operating Systems Principles, December
1995.

[3] J. Catozzi and S. Rabinovici. Operating System Extensions
for the Teradata Parallel VLDB. In Proceedings of Very Large
Databases Conference, pages 679–682, 2001.

[4] D. E. Culler, J. P. Singh, and A. Gupta. Parallel Computer
Architecture: a Hardware/Software Approach. Morgan Kauf-
mann Publishers, San Francisco, CA, 1999.

[5] P. Druschel and L. L. Peterson. Fbufs: A highbandwidth cross-
domain transfer facility. In Proceedings of the Fourteenth ACM
Symposium on Operating System Principles, pages 189–202,
1993.

[6] D. R. Engler, M. Frans Kaashoek, and J. W. O’Toole. Exoker-
nel: An Operating System Architecture for Application-Level
Resource Management. In Proc. of the 15th ACM. Symp. on
Operating Systems Principles, December 1995.

[7] W. W. Hsu, A. J. Smith, and H. C. Young. Analysis of the Char-
acteristics of Production Database Workloads and Comparison
with the TPC Benchmarks. IBM Systems Journal, 40(3), 2001.

[8] W. W. Hsu, A. J. Smith, and H. C. Young. I/O Reference Be-
havior of Production Database Workloads and the TPC Bench-
marks - An Analysis at the Logical Level. To appear in ACM
Transactions on Database Systems, 2001.

[9] M. A. Kandaswamy and R. L. Knighten. I/O Phase Character-
ization of TPC-H Query Operations. In Proceedings of the 4th
International Computer Performance and Dependability Sym-
posium, March 2000.

[10] K. Keeton. Computer Architecture Support for Database Ap-
plications. PhD thesis, Dept. of Computer Science, The Uni-
versity of California at Berkeley, Fall 1999.

[11] K. Keeton, D. A. Patterson, and J. M. Hellerstein. A Case for
Intelligent Disks (IDISKs). SIGMOD Record, 27(3):42–52,
September 1998.

[12] V. S. Pai, P. Druschel, and W. Zwaenepoel. IO-Lite: A Uni-
fied I/O Buffering and Caching System. ACM Transactions on
Computer Systems, 18(1), 2000.

[13] E. Riedel, C. Faloutsos, G. A. Gibson, and D. Nagle. Ac-
tive Disks for Large-Scale Data Processing. IEEE computer,
34(6):68–74, June 2001.

[14] M. N. Thadani and Y. A. Khalidi. An efficient zero-copy I/O
framework for UNIX. Technical Report SMLI TR-95-39, Sun
Microsystems Laboratories, Inc., May 1995.

[15] M. Uysal, A. Acharya, and J. Saltz. Evaluation of Active Disks
for Decision Support Databases. In Proceedings of the Sixth
International Symposium on High Performance Computer Ar-
chitecture, 2000.

[16] S. Venkatarman. Global memory management for multi-server
database systems. Technical Report CS-TR-1996-1325, Univ.
of Wisconsin, 1996.

12

	s1p2.pdf
	Precise and Accurate Processor Simulation
	Computer Sciences Department
	University of Wisconsin
	1210 W. Dayton Street
	Madison, WI 53706
	{cain,baschwar}@cs.wisc.edu
	Abstract
	1.0 Introduction and Motivation
	TABLE 1.� Attributes of various performance modeling techniques
	FIGURE 1.� Use of Simulation During Design

	2.0 Flexibility, Precision, and Accuracy
	3.0 PharmSim Overview
	TABLE 2.� Simulation Parameters
	FIGURE 2.� Cache effect of simulating the whole system

	4.0 Sources of Inaccuracy
	4.1 Operating System Effects
	FIGURE 3.� % Executed Instructions on Wrong Path
	FIGURE 4.� Effect of wrong-path instructions on IPC

	4.2 Direct Memory Access (DMA)
	FIGURE 5.� Effect of wrong-path instructions on memory stall time

	4.3 Effect of Wrong-Path Execution
	FIGURE 6.� Effect of wrong-path instructions on return-address stack accuracy

	5.0 Conclusions
	6.0 Acknowledgments
	References

	Electrical and Computer Engineering
	University of Wisconsin
	1415 Engineering Drive
	Madison, WI 53706
	{lepak,mikko}@ece.wisc.edu

	Harold W. Cain, Kevin M. Lepak, Brandon A. Schwartz, and Mikko H. Lipasti

	s2p1.pdf
	Evaluating Non-deterministic Multi-threaded Commercial Workloads
	Alaa R. Alameldeen, Carl J. Mauer, Min Xu, Pacia J. Harper, Milo M.K. Martin, Daniel J. Sorin, Ma...
	Computer Sciences Department University of Wisconsin — Madison http://www.cs.wisc.edu/multifacet/
	Abstract
	1 Introduction
	2 Workload Development
	2.1 Reducing Simulation Run Times
	2.2 Setup and Validation of Workloads
	Figure 1. Workload parallel speedups

	2.3 Scaling Down Workloads

	3 Workloads
	3.1 OLTP
	3.2 SPECjbb
	3.3 Apache
	3.4 Slashcode
	3.5 Barnes-Hut

	4 Target System & Simulation Infrastructure
	4.1 Target System Model
	4.2 Full-System Simulation
	4.3 Memory System Simulator

	5 Workload Properties
	Table 1. Workload properties

	6 Commercial Workload Non-determinism
	Figure 2. OS scheduling decisions are affected by memory latency
	Figure 3. Execution time variations for two different cache configurations

	7 Workload Variability
	Table 2. Some OLTP properties for different simulation lengths
	Figure 4. Cycles per transaction
	Figure 5. Misses per transaction
	Figure 6. Instructions per transaction

	8 Related Work
	9 Conclusions
	Acknowledgements
	References

	s3p3.pdf
	1. Introduction
	2. Related Work
	3. The Processor Model
	3.1 Processor overview
	3.2 Model overview

	Table 1: Model Parameters
	3.3 Obtaining Model Parameter Values

	Table 2: Processor Parameters
	4. Model Validation
	4.1 Validation with Cycle Accurate Simulation

	Table 3: Comparison of IPC and number of outstanding Loads and Stores
	Table 4: Distribution of Loads and Stores at System for Dual Strand (trace-B)
	Table 5: Buffer Utilizations for Dual Strand (trace-B)
	4.2 Sensitivity Studies

	Table 6: Sensitivity Studies Results
	Table 7: Distribution of Consecutive Stores
	4.3 Burstiness of Stores
	5. Overlap (Hidden) Miss Penalty Study

	Table 8: Comparison of IPC and SB Usage with Store Briskness
	Table 9: Processor Stall and Cache Miss Overlap for a Range of Latencies
	Table 10: Processor Stall and Cache Miss Overlap at a lower store miss rate
	6. Integration with System Model
	7. Conclusion
	Acknowledgement
	References

	cover.pdf
	Russell Clapp, IBM
	rclapp@us.ibm.com
	Kimberley Keeton, Hewlett-Packard Laboratories
	kkeeton@hpl.hp.com
	Ashwini Nanda, IBM TJ Watson Research Center
	ashwini@watson.ibm.com
	Final Program
	
	8:00 am - 8:15 am
	Registration
	8:20 am - 8:30 am
	Introductory Comments
	8:30 am – 10:00 am
	Michel Dubois, Jaeheon Jeong, Shahin Razeghia, Mahsa Rouhaniz and Ashwini Nanda
	Harold W. Cain, Kevin M. Lepak, Brandon A. Schwartz and Mikko H. Lipasti
	Shubhendu S. Mukherjee
	Session 2: Methodologies

